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I view the plasma as a collection of filaments to which are attributed both a finite charge and a
finite current.  As in Taylor (1993), an equation for the current profile is determined by maximizing
the entropy of this collection subject to fixed total energy.  I examine in detail the case where the
amount of charge each filament carries is infinitesimally small.

Plasma is created in a tokamak by a powerful
electric field pointing in the toroidal direction.
Because of energy transport, some regions are
hotter than others.  Temperature determines
resistivity, which determines current.  Currents
introduce magnetic fields, which exert forces on the
energy-carrying charges.  The system quickly
settles into a self-consistent state, given by the
current profile.  As one can easily imagine, it is
desirable that all of the plasma be confined to the
tokamak.  Experiments show that some profiles
enhance confinement.  Particularly stable are
hollow profiles: those where the current density is
localized off-axis.  There is also experimental
evidence that tokamaks with a net charge
demonstrate enhanced confinement. The following
model is therefore of considerable interest because
it can accommodate both a hollow profile and a net
charge.

We begin by introducing polar coordinates on a
cross section of the tokamak, and a collection of
number densities nx(r) of filaments indexed by the
charge and current that each carries.  Type-x
corresponds to (qx, jx).  Cylindrical symmetry is
assumed throughout.  (In the case we will be
considering in detail later, each filament carries a
positive unit of current j0, so that j0 nx(r) is the
current profile.)  From now on it will be safe to
view the system as a circular dish in which billions
of electrons swarm like bacteria, (as long as one
remembers that those electrons are actually rods
coming out of the page.)  The particles movements
are based on the values of the electric and magnetic
potentials throughout the dish, while the potential at
a point is determined by the positions of all the
particles.  Because we cannot keep track of what
each particle is doing, it is fair to pretend that their
movements are random, and that the state they
settle into is the one of maximum disorder.

The entropy is approximately given by
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The total potentials
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satisfy Poisson's equation
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The electric and magnetic energies of the system
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The total charge and current are
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Our first equation is now obtained by varying nx(r)
and requiring, to first order in δnx(r), the change in
S to be a sum of terms each proportional to the
change in one of the quantities being held fixed.
The result is

nx (r) = exp{−β eqxφ − βm jxψ − µeqx − µm jx + 1}, (7)

where β and µ are the standard Lagrange
multipliers. β is mathematically identical to a
temperature.  The electric and magnetic
temperatures are allowed to be different.  One can
imagine characterizing a system by its temperature
instead of its energy.  However, the correspondence
between β and E need be neither one-to-one nor
onto.  In practice, it is easier to stipulate a
temperature, and then solve (4) and (7) for φ and ψ,
from which all quantities of interest can be found.
One may or may not care to find E.  On the other
hand, once we have solved (4) and (7) for n(r) in
terms of µ, we may wish to use (6) to eliminate µ in
favor of Q and I.

To get an idea of how this model supports
various profiles, suppose for the moment there is no
current anywhere, and filaments carry either a
positive or negative unit of charge; x = (±q0, 0).
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Because it is nonlinear, (8) has two classes of
solutions.  Particularly interesting is the class that
corresponds to negative β, for that is when the
charged rods form clusters1.  It makes sense to say
that the temperature is negative because the entropy
of a state with localized charges is less than the
entropy of a state where the charges are spread out
evenly, and the first requires more energy than the
second  (remember that temperature is the
derivative of entropy with respect to energy).  It is
still true that our method describes the state of
maximum entropy, not minimum.

Now consider the more interesting case x =
(±q0, j0).  With the substitution
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(4) becomes
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We get the following two relationships as
immediate consequences:
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A linear approximation to (10) will give us a
rough idea of how the profile depends on q0, j0, β,
Q, and I, but will not include solutions in that
interesting class particular to the nonlinear
equations.  However, by knowing under what
combinations of the parameters the approximations
made in the linear case fail, we can predict when
the nonlinear terms become important, and that will
be when the rings form.

We proceed to solve (10) when φ is
infinitesimally small and ψ = ψ0+ ψ1, where ψ 0 is
the solution when φ equals zero.  If we temporarily
restrict ourselves to positive

temperatures, ∆ψ0 = λ me
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These may be written more suggestively as
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Let us examine (14) more closely.  For small r,
φ ≈ φ(0)J 0 (r / λe ) , since exp(-ψ0) is

approximately 1 (J0 is the zeroth order Bessel
function).  The second solution is ruled out because
the derivative of φ, the electric field, must be zero
at the origin.  For medium r, the WKB method of
solving differential equations is appropriate, as
exp(-ψ0) acts like a small potential.  In the limit of
small r, the coefficient of the leading r term in the
WKB solution must match the coefficient of the
leading r term in the J0 solution.  One finds
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For large r, ∆φ ≈ 0   implies
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The log term will be present only when the net
charge Q is nonzero.  The power terms are like
multipole corrections.  To find the c's, one needs to
adjust φ(0) in order that ∆φ satisfy (6).  This is best
done numerically.

To find ψ1 from (15), we need the Green's
function
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In the two regions to the left and right of r', G is
some linear combination of the two homogenous
solutions
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If we ask that G be continuous we obtain a relation
between the a's and b's.  A second relation comes
from integrating (18) from r'-ε to r'+ ε:

∆(r∂ rG) = 1, (20)



where here ∆ represents the jump that occurs at r'
(any continuous function contributes nothing).
Finally, ψ1 is given by

ψ1 (r ) = dr' G(r, r ' ) f (r ' ).∫ (21)

This is a work in progress.  The very next thing
to do would be to compute ψ1 assuming all terms of

the form (1+
λ

m

8
r 2)−2 are constants.  Then, after the

solution is found, to see what the effect of changing
those constants would be.  Another easy thing to do
would be to solve for ψ1 when βe is negative.

If there are no charges, the trivial solution to
(15) is ψ1 = 0, as it must be.  The introduction of an
electric potential causes the current-carrying
filaments to adjust themselves slightly, but only
because they have a charge "tied on".  If there were
two species of objects, those that carry current and
those that carry charge, then no coupling would
take place.  One can imagine charges jumping from

one filament to another, without affecting the
current.  Such phenomena are not included in the
model presented here.  Still, much can be done with
what we have. To deal with variable strength
filaments simply let x = (mq0, nj0), m,n e {±1, ±2,
…}.  More importantly, the parameter domain
remains to be explored.  For instance, it would be
nice to see what the charge and current profiles
look like at different values of βe/βm and q0/j0,
especially near when our approximations fail.
Hopefully future efforts to control the current
profile through an understanding of the solution to
the nonlinear equations (10) will benefit from the
above analysis.
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