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We examine the power output tolerance of a simulated version of the Linac Coherent Light
Source (LCLS). We study the power output variation from optimal with independent variation in
undulator field strength and undulator offsets. Our simulations suggest a tolerance of 0.1% percent
for undulator field strength and 50 µm tolerance in undulator offset.

INTRODUCTION

The Linac Coherent Light Source is being constructed
at the Stanford Linear Acceleration with a projected
start of operations in 2008. A number of studies have
been initiated for the for the purposes of determining
the engineering specifications and tolerances for the fully
built machine. This paper takes up a small part of the
larger issue; examining the necessary tolerances for mag-
netic field strength errors and errors in undulator longi-
tudinal placement. We use a method of computer simu-
lation to examine these effects because the construction
of a physical copy of the LCLS would be a necessarily
cyclic endeavor.

FEL BASICS

The LCLS Free Electron Laser (FEL) is a means to
produce a high-brightness X-ray laser pulse[1]. The las-
ing action of the FEL is analogous to the stimulated
emission process in a gas or solid state laser. The las-
ing medium in the FEL is an ultra-relativistic, low-
divergence beam of electrons[2, 3]. It is a process anal-
ogous to the quantum laser; the emission is due to the
transition of electrons between unbound states in its in-
teraction with a magnetic field. The beam passes, in the
z-direction, through a series of magnets called ”undula-
tors”. These undulators consist of small dipole magnets
of alternating polarity that maintain a magnetic field in
the y-direction, perpendicular to the path of the elec-
trons, of the form

By = B0 cos kuz, (1)

where By is the strength of the y-component of the mag-
netic field on axis, B0 is total amplitude of the magnetic
field, ku is wave number corresponding the period of the
undulator magnets, and z is the displacement along the
undulator axis. The alternating fields cause the elec-
tron beam to oscillate in the x-direction, perpendicular
to both the initial direction of motion and the magnetic
field. A short undulator is diagrammed in figure 1. The
electrons emit synchrotron radiation as they are deflected
by the magnetic fields of the undulator[4]. Only radi-
ation emitted at a certain frequency, and those of its
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FIG. 1: Simple Diagram of Undulator Module: electrons enter

from the left at high velocity in the z-direction

higher harmonics, will resonate in the undulator. A FEL
can operate with a single long undulator, but it is usu-
ally split up into several modules for beam diagnostics,
focusing and pumping. The modules act in tandem to
produce a laser pulse at the resonant frequency. Drift
sections between undulator modules contain diagnostic
equipment for monitoring the output radiation and elec-
tron beam. Quadrupole magnets may also be placed in
these regions to allow for focusing of electron beam in ei-
ther x- or y-planes and to keep the electron density high.
This focusing keeps the size of the electron beam small.
Steering magnets known as ”correctors” may be placed
in these regions to correct for the kick in momentum the
electrons receive from the fringe fields of the undulator
or misaligned quadrupoles.

There is an energy exchange between the free electrons
and the radiation field due to their transverse motion,
which is given by

dγ

dt
=

e ~E · ~v

m0c
, (2)

where dγ
dt

is the rate of change of electron energy versus

time, ~E is the electric field vector for the radiation field
at the position of the electron and ~v is the velocity of the
electron, e is the charge of the electron, m0 is the mass
of the electron and c is the speed of light in vacuo. At
the resonant frequency the energy change is constant and
accumulates over many periods.

The resonance frequency of radiation depends on a
number of parameters. The resonance wavelength is
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Parameter Value

FEL Length 120 m

γ 14.328 GeV

λ0 1.505 Å

kU 209 rad

m

Number of Undulator Modules 34

Length of Undulator Modules 3.36 m

FIG. 2: Simulation Parameter Values

given by the following resonance relation:

λ0 =
λU

2γ2
(1 +K2), (3)

λ0 is the resonant wavelength of the FEL, λU is the pe-
riod of the magnetic field. K is a dimensionless constant
that is proportional to the strength and period of the
undulator fields:

K =
eB0

√
2mckU

. (4)

Resonance occurs when the radiation advances one
wavelength each undulator period. The magnetic field
period and the magnetic field strength are constants of
FEL apparatus. However, the energy of the incoming
electrons, γ, can be altered to control the resonant fre-
quency. Therefore, the FEL is tunable in contrast to the
fixed frequency of the conventional quantum laser.

The motivation for this study is to determine the tol-
erable deviation from an ideal undulator in order set en-
gineering limits. We use simulations to examined these
tolerances because it would be impossible to solve the
equations of motion in this inherently non-linear and cou-
pled system.

A concise list of starting simulation parameters for
LCLS are shown in figure 2.

The K parameter defined by eqn 4 is dependent on the
RMS value for field strength and period averaged across
all undulator modules. We see that λ0 varies like the
square of the field strength for large values of K. If there
is sufficient error in magnetic field strength, that is, the
deviation of the field strength from optimal is large, the
resonance condition will become a function of longitudi-
nal position, z.

We simulate errors in the magnetic field and observe
how saturation (output) power of the FEL is affected.
These simulations will help to get an estimate of the tol-
erable amount of relative variation in the LCLS FEL.

The simulations focused on two types of field errors:
correlated and uncorrelated errors. Uncorrelated errors
are simply random field variation around the calculated
optimal field strength on each set of poles in the undu-
lators. Correlated errors depend on the errors in adja-
cent regions for their values. Correlated errors attempt
to minimize the first and second field integrals of the

magnetic field, which are proportional to the net change
in transverse (x-direction) momentum and position re-
spectively. Having given the fundamental principles we
proceed to several indicators of performance.

The ”phase shake” of the interaction phase between
the particles and the radiation field is defined as θ =
(k+ kU )z −ωt. The phase shake is a measure of how far
”out of phase” the electron beam is with respect to the
radiation it is resonating with:

θPS(z) =

∫ z

0

dθ

dz
dz−θ̄

z

L
= −

∫ z

0

(k+ku)
β2

x + β2

y

2
dz−θ̄

z

L
;

(5)
k is the wave number of the resonant radiation, ku is the
wave number corresponding to the period of the undu-
lator magnets, βx and βy, respectively, are the average
values of the x- and y-components of beam’s velocity (in
units of c). Because the LCLS undulator is planar, field
errors do not excite a motion in x and therefore βx can be
assumed to be zero. We subtract θ̄ z

L
where θ̄ is the slope

from a linear fit to
∫ z

0

dθ
dz
dz, because any linear drift in in-

teraction phase, θ, can be compensated for by adjusting
the beam energy. θPS is the residual fluctuation around
a constant phase. A ”sudden” phase shake of π would
put the electron beam completely out of phase with the
radiation, causing it to emit radiation that destructively
interferes with the radiation already propagating through
the undulator. Whenever the phase shake is much dif-
ferent from zero, resonance suffers, reducing the output
power of the free electron laser. While θPS can have both
signs, a parameter for describing field quality is the rms
value of θPS . A larger value of θPS,rms corresponds to a
larger phase shake and, therefore, a stronger degradation
of the FEL performance.

The value of K given in eqn 4 is an approximation
for on axis K values; K also varies in both transverse
directions (x- and y-directions)[5]:

K(x, y) =
eB0

√
2mckU

(1 +
k2

x

2
x2 +

k2

y

2
y2), (6)

where the values of kx and ky depend on magnet geom-
etry and satisfy the pythagorean constraint with kU , B0

is the magnetic field at the center of the undulator, e is
electron’s charge. The value for K in equation 3 is the
on-axis value of K = K(0, 0). For LCLS the intended
undulator geometry is planar with kx = 0 and ky = kU ,
making the effective K only a function of the y-offset of
the beam or undulator. The FEL performance is invari-
ant to x-offsets.

All of this background material is discussed more com-
pletely in [6].

We will proceed first with a first of the tolerance of
saturation power and length to field errors. The second
discussion is of power tolerance to undulator offsets. All
data was a result of 3-D numerical modelling using the
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FIG. 3: Power Tolerance to Variation in Undulator fields

program Genesis 1.3 [6]. Genesis 1.3 simulates FEL be-
havior by numerical integrating the equations of motions
for electrons traversing a virtual FEL. More detailed ex-
planations can be found on Genesis 1.3 website[7].

TOLERANCE UNDER UNDULATOR FIELD

VARIATIONS

We introduced errors in the magnetic field strength for
both poles in each period of the undulators, λU , about
the optimal (non-error) value and examined indicators of
FEL performance, mainly saturation power and satura-
tion length. We compared these indicators with several
quantities such as the 1st and 2nd field integrals, and the
value of the root-mean-square phase shake.

Field errors are generated between 0.02% to 0.32% rms
fluctuation. The results are shown in figure 3. The data
is normalized to the value of power without errors. Each
data point on the figure is an average of nine runs with
different random seeds. The error bars of each point is
simply the standard deviation of each set of runs. Clearly,
when the errors are uncorrelated, the power output scales
poorly.

It is reasonable to assume that the actual type of er-
ror in the physical LCLS can be made to be correlated.
The magnets of the undulator modules can be shimed,
swapped and moved to a nearly optimal configuration,
based on the errors of the set of magnets, can be obtained.
For our purposes we will set the tolerance threshold at
ninety percent of the optimal power output, which will
give us an allowance of approximately 0.1% relative error
in field of a given magnet (as shown in figure 3). Based
on engineering estimates it is reasonable to assume that
precision as good as 0.001% for uncorrelated errors can
be achieved due to the limit of the precision for measuring
magnetic field. Thus, there is no fundamental engineer-
ing obstacles to achieving necessary tolerances for good
power output.
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FIG. 4: Saturation Length Tolerance to Variation in Undula-
tor Field
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FIG. 5: Power Tolerance to Phase Shake

The saturation length is also a good indicator of per-
formance. In figure 4. we plot relative saturation length
versus maximum relative variation in field. The maxi-
mum relative saturation length is limited to 1.36 because
the FEL we simulated is 120 meters long. For uncor-
related errors the amplitude of fluctuation about value
when it is optimally configured is several orders of mag-
nitude greater than the in the correlated case, which is
nearly flat.

We will use the same tolerance threshold as the LCLS
Conceptual Design Report (CDR)[1], which uses a 3%
variation in saturation length as an appropriate tolerance
threshold. The tolerance thresholds are shown on the
graph for scale. Following the same arguments in the
previous section, we can choose the tolerance to be about
0.1% and still be within 3% of the saturation length. This
agrees with the result of the previous section with the
choice of power tolerance threshold of 90%.

We examined how the power varies as a function of
∆θRMS,PS . In figure 5 we show the difference between
relative saturation power and the value of the RMS phase
shake. The uncertainty on the points is again the stan-
dard deviation of the set from the mean of the set. We
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see that RMS phase shake is a good indicator of per-
formance. The runs with low phase shake had higher
output power. This makes sense because if there is a
large phase difference the resonance ceases to occur and
the output power is diminished. This result suggests that
RMS phase shake is a universal variable regardless of the
distinction between correlated and uncorrelated errors.
Phase shake is also an essentially measurable quantity
(dependent on the magnetic fields), so phase shake can
be used, over preference for error type, as something that
is ”partially-correlated” error is ill-defined. We can as-
sume that the data in figure 5 are two parts of the same
function. This allows us to drop the distinction between
the error types.

The graph also shows that the phase shake increases
as relative error of the undulator field increases (the data
points are in the same order as in figure 3). From the
graph we see that we are allowed a phase shake as great
as 10−5 radians over the course of the FEL and still main-
tain ninety percent of output power. It has little inde-
pendent meaning, as the phase shake is a dependent vari-
able; it, like saturation power depends on a large number
of parameters. However, there is likely a less complex
relationship between phase shake and power than field
variance and power.

Finally, we will look at the tolerance of saturation
power to the second field integral. The form of the first
and second field integrals are shown below:

∆p ∝

∫ L

0

By(z)dz, (7)

∆x ∝

∫ L

0

∫ L

0

By(z)dz, (8)

where L is the length of the FEL. The first field integral
gives the average change in momentum of beam between
it across the length of the FEL. The second field inte-
gral gives the FEL offset position. The field integrals
are parameters that are entirely depend on the undula-
tor, therefore, they are measurable during construction
and are the parameters for field optimization. The first
and second field integrals are intimately related in that
if the second field integral is small, the first must also be
sufficiently small as well.

In figure 6 the relationship between the second field
integral and the output power is shown. We see that
lower 2nd field integrals allows for more optimal satura-
tion power. We also see that the 2nd field integrals of the
cases with correlated errors have smaller field integrals
and greater output power. This is to be expected, the
correlated errors are generated in a way that nearly opti-
mizes the 2nd field integral. This supports the idea that
configuring the undulator magnets in a way that reduces
the field integral will provide a sufficiently good toler-
ance, with enough headroom above the value achievable
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FIG. 6: Power Tolerance to 2nd Field Integral

with reasonable engineering assumptions (a factor of one
hundred). The graph also seems to suggest that the 2nd

field integral is another hidden variable that correlates
error type and magnitude similarly to RMS phase shake;
phase shake is dependent on the field integral. Mini-
mizing power variation to field errors is tantamount to
measuring and optimizing the 2nd field integral.

TOLERANCE UNDER UNDULATOR Y-OFFSET

VARIATIONS

We examine the tolerance output power to undulator
y-offsets. Due to the planar configuration of the LCLS
undulator, offset in x have no impact on the performance.
We looked at uniformly random variation of undulator y-
offset about a systematic offset. Four systematic offsets
were used: 0, 50, 100, and 200 µm. In figure 7 we see the
effect of changing the offset on the saturation power. All
power calculations are normalized to the value at no off-
set and optimal power. The input energy of the electron
beam is adjusted for each systematic offset to maximize
the power, the optimized power is within 0.1% of the
maximum power. We notice several things about this
graph, the maximum output power decreases as the sys-
tematic offset increases. For undulator offsets, the undu-
lator parameter K varies significantly over the transverse
beam size to disturb the FEL resonance condition.

The effect is not linear, because it replaces y with (y -
∆y) in equation 6, this results an addition to the equa-
tion determiningK (equation 6). ThusK becomes larger
in both absolute value and the magnitude of the varia-
tion off the minimum of the quadratic dependence. If
K varies sufficiently along the axis of the FEL, the res-
onance condition (equation 3) also varies, and the effect
is increased because because λ0 ∝ K2. Therefore we also
expect the runs with larger offsets and larger variations
about the offset to drop in power more than ones with
smaller offsets. Looking again at the graph and using
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FIG. 7: Power Tolerance to Undulator Y-offset

our previous definition of tolerance, we observe that 90%
power is still reached if we have a 50 µm systematic offset
and a 50 µm uniform variation about the offset.

We can also looked the tolerance based on deviation
from saturation length. In figure 8 we plot the saturation
length versus amplitude of the uniform variation for the
various undulator offsets. The uncertainty bars on this
figure are again the standard deviation of the value in
that set of runs, however, we only included the necessary
uncertainties.

We see that the saturation length is closer to opti-
mal when the offsets are small. The saturation length
maximum value in the simulations is 120m, the length
of the FEL, having longer saturation lengths would re-
quire a longer FEL. The maximum possible saturation
length corresponds to approximately 1.24 times the op-
timal saturation length. Based on the 3% tolerance, we
see that an appropriate choice for y-offset tolerance based
on saturation length up to 50 µm systematic offset with
an 50 µm variation about the systematic offset. This
is coincidentally the tolerance that we also noted in the
previous section. There is one point that has shorter
saturation length than all the other for 0 micron sys-
tematic offset and 200 micron variations. This is likely
because beam reached its saturation point near the in-
terface between a drift section and an undulator making
the subsequent trial miss there saturation because they
were passing through a drift section.

CONCLUSION

We looked a two different undulator parameters that
affect the output power of the LCLS FEL, undulator field
errors and undulator offset errors. Using our simulations
we suggest a tolerance of at least 0.1% percent for undu-
lator field strength errors and for y-offset errors a 50 µm
systematic offset with a 50 µm variation. This results are
essentially consistent with the values quoted in the CDR,
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FIG. 8: Saturation Length Tolerance to Undulator Y-offset

our explicit calculations agree with the CDR’s rough an-
alytic estimates[1]. These tolerances are technologically
reasonable and achievable.

We have seen that two composite values, θRMS,PS and
the 2nd field integral, relate field error type and field er-
ror magnitude. Those values can be measured at the
apparatus and optimized to reduce power losses to field
errors as opposed to relying on the ill-defined error types
”correlated” and ”uncorrelated”.

It is important to understand, however, that the sim-
ulations treated the variation in undulator field strength
and undulator offset as each independently affecting the
saturation power and length. In reality they are corre-
lated, such that having both parameters at their separate
tolerance limits(3%) would likely induce a variation dif-
ferent than 6% for saturation length. In fact, there are on
the order of one hundred important parameters that are
all correlated in a complicated fashion. It would be inher-
ently difficult to search the many dimensional parameter
space for the surface bounding the regions of tolerable
performance.

FUTURE WORK

These tolerance values with be helpful in the construc-
tion of the LCLS, justifying reasonable engineering ex-
pectations and qualifying the original estimates made in
the CDR. Future work should examine the results of a
physical mockup of a section of undulator to similar vari-
ances in the field strength or undulator positioning. With
the completion of the physical LCLS the true effects can
be quantified and examined in relation to the results our
simulations.
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