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We present a numerical model to image light scattering in bipolar nebulae centered on a luminous
star. The model accepts an axisymmetric density distribution as input, and yields an image of a neb-
ula based on that assumed density distribution and a chosen systemic inclinaton. We used the model
to find simulated nebulae that resemble the real observed nebulae IRAS22036+5306 and Gomez’s
Hamburger in their gross characteristics. We also used the model to determine the appearance
implied by a theoretical density distribution obtained from an investigation of the hydrodynamics
of nebular dust and gas when the mass-losing central star is in a binary system.

Planetary or protoplanetary nebulae are created when
red giant or AGB stars eject mass in the form of gas
and dust. Red giant and AGB stars are swollen to many
times their main sequence size, and particles in the outer
layers are only loosely gravitationally bound. Radiation
pressure from the star acts on these particles and pushes
them out, so the central star is surrounded by outward-
flowing gas and dust. Light from the star scatters on
the dust and the image seen from a telescope is a reflec-
tion nebula. In the case of bipolar nebulae, the gas and
dust are organized in an axisymmetric distribution. We
created a computer program to model the scattering of
light through the dust in a bipolar nebula, for a given
density distribution and angle of inclination with respect
to the viewer. The product of such a simulation is an im-
age showing the appearance of a nebula with the given
distributions and angle of inclination.

Although the reasons for nebula formation in general
are fairly well known, why some nebulae become bipolar
during their lifetime is not well known. Various theories
exist attempting explain it, but none are universally ac-
cepted as of yet. The model described here can be used
to generate simulated nebulae which look similar to real
observed bipolar nebulae. A qualitative comparison can
give us a hint as to the density distributions of the real
nebulae. Knowing the density distributions of real neb-
ulae could help us understand the physical mechanisms
that create the symmetry of bipolar nebulae. In addition
to helping to discover the density distributions of bipo-
lar nebulae, the program can be used to view results of
theoretical simulations for bipolar formation so they can
be compared with observations.

The model assumes steady, constant-velocity mass
loss, which leads to a radial density distribution at any
given latitude, 6, of 1/r2. More specifically,
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where p is the density of both the dust and the gas, M is
the total mass loss rate for the star, and v is the velocity
with which the mass is ejected, assumed to be constant
in this study. Because dust does not condense into grains
at high temperatures, dust grains cannot exist inside a

certain inner radius from the star, ;. Inside that radius,
the dust density should be zero. However, dust grain
formation is a continuous process, so grains continue to
form and grow over a finite radial distance. Therefore,
the inner cutoff radius for dust is not a sharp discontinu-
ity but a smoothed edge. To accommodate that factor,
the model assumes a 1/r? dust distribution, cut off at
an inner radius r;, and smoothed by convolution with
a triangular function. This steady, constant-velocity ra-
dial distribution is the default for the model, however,
alternative radial distributions can be chosen to use in
a simulation by varying M (t) and v(t). The latitudinal
density distribution f(6)is specified by the user, and can
be any function of latitude. In addition, the user spec-
ifies an angle of inclination, Z;,., at which to view the
nebula.

To describe light as it moves through dust, the model
utilizes the equation of radiative transfer and assumes
single scattering. The equation of radiative transfer is

[1]:

% =—kl+e (2)
where I is the intensity of a beam of light, = is distance
in the direction of propagation, x is a quantity called
the absorption coefficient, and € is the emissivity. The
absorption coefficient represents the fraction of the in-
tensity that is absorbed by the material, or scattered out
of the beam. The emissivity represents any intensity that
is emitted by the material into the beam, or that is scat-
tered into the beam. The model integrates equation (2)
twice; initially it integrates the intensity from the central
star radially outwards to obtain values of radial intensity
at a finite number of angles and radii, then it integrates
the intensity along the line of sight of the viewer. When
the intensity is integrated along the line of sight, the
emissivity is represented by the fraction of the radial in-
tensity at a given point (known from the first integration)
that is scattered in the direction of the viewer. The ab-
sorption coefficient and emissivity are defined based on
the cross sectional area of the scattering dust grains. The
grains are assumed to be spherical, with a constant grain
size. We assumed an isotropic scattering phase function.



FIG. 1: Left: Real image of 122036, Right: Image from a sim-
ulation, M = 1074Ms,m/yr, ri = 3.3 x 10'em, v = 10km/s,
Line = w/4rad

The absorption coefficient is defined as
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where n is the number density of dust grains and a is
the radius of each grain. The grain size is assumed to be

constant. The emissivity is defined to be

€= n7ra2iIrA (4)
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Here, I, is the radial intensity and A is the albedo of the
dust.

The integration is performed with a second-order
Runge-Kutta scheme. In the radial integration, a vari-
able step size is used. The steps are sized so that all steps
have equal opacity when the radial density distribution
goes as 1/r%. In the integration along the line of sight, a
constant step size is used. For the radial integration, in
addition to integrating equation (2), it is necessary to re-
duce the intensity by 1/r> because the light spreads out
as it moves radially. To do this, after each step in the
radial integration, the intensity at a step k is redefined
as follows:
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We created two model nebulae which are comparable
to the real nebulae IRAS22036+5306 and Gomez’s Ham-
burger. Both models were created using the default ra-
dial density distribution. They used 150 integration steps
in the radial and line-of sight integrations, at 50 different
latitudes. The central star was assumed to have a radius
of 1AU. The grain radius was 10~°cm, the bulk density
of dust grains was 2.5g/cm?, and the albedo was 0.25.
The ratio by mass of gas to dust was 200.
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FIG. 2: The latitudinal density distribution of the model cor-
responding to IRAS22036+5306

FIG. 3: Left: Real image of Gomez’s Hamburger, Right: Im-
age from a simulation, M = 107* My, /yr, r; = 3.3x 10" ¢cm,
v =10km/s, Linc = Orad

In Figure 1, an image of the real nebula
TRAS22036+5306 and one of the model nebula are
shown next to each other. Qualitatively, the images
have similarities, such as the dark equatorial disk which
blocks light, and the egg-shaped bright area below the
disk. There are also differences; for example the real
nebula has very defined light areas along the axis of
symmetry that the model does not have. This could be
due to effects that our model does not take into account,
such as jets along the axis of symmetry. In addition,
there are asymmetric dark areas near the center of
TRAS22036+5306 which obviously cannot be reproduced
with our symmetric model. The latitudinal density
distribution used in the simulation is shown in Figure 2,
and consists of a very dense equatorial disk with a less
dense background. The model nebula is viewed at an
inclination angle of 7/4 radians.

In Figure 3, an image of the real nebula Gomez’s Ham-
burger and one of a comparative model nebula are shown.
Again, the images have qualitative similarities. There is
a large, dark disk, seen edge-on, and the only light that
escapes does so on the top or bottom of that disk. Again,
there are also differences, for example the real nebula has
two fairly flat disks of light, and the simulated nebula
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FIG. 4: The latitudinal density distribution of the model cor-
responding to Gomez’s Hamburger
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FIG. 5: A functional fit to the latitudinal density distribution
produced in model M3 of Mastrodemos and Morris, 1999 [2].

has more rounded semi-circles of light. The latitudinal
density distribution for the simulated nebula is shown in
Figure 4, and again consists of a very dense equatorial
disk plus a less dense background. The model is viewed
at an inclination angle of 0 radians.

The effect of the systemic inclination can be seen by
creating simulations of nebulae with identical parame-
ters, but with different inclinations. To show this, we
created models of the simulation seen in Figure 1 at vary-
ing inclinations. The results are shown in Figure 7, with
inclinations of 0.1468 , /4, and 7/2 radians. The reason
0.1486 radians was selected as an angle of inclination is
because it corresponds to the angle at the edge of the
thick equatorial disk (see Figure 2).

We also used the model to view the results of simu-
lations of physical processes theorized to cause bipolar
nebulae. Specifically, we modeled results given by Mas-

FIG. 6: An image of M3, M = 7.5 x 10_5Ms,m/yr, ri =
5.0 x 10" em, v = 15km/s, Line = w/8rad

trodemos and Morris, 1999 [2] for the dust density dis-
tribution resulting when a nebula’s central star is part
of a binary system. Mastrodemos and Morris created fif-
teen models, with different values for the secondary mass,
semimajor axis, dust outflow velocity, and other parame-
ters. Of those fifteen models, five were given a functional
fit for their resulting latitudinal density distribution. We
created images of all five of those models, and will show
one here. The model we are showing is M3 from [2]. The
functional fit for the latitudinal density distribution of
M3 is given by Figure 5, and an image is given in Fig-
ure 6. We used the same values for star radius, grain
radius, bulk density, albedo, and gas-to-dust ratio as in
the previous two simulations.

From the simulations shown here, we can draw some
conclusions about the bipolar nebulae IRAS22036+5306
and Gomez’s Hamburger. We were unable to create mod-
els resembling these nebulae without a sharp contrast
between the high-density equatorial disk and the lower
density areas at higher latitudes. In both cases, the dark
disk around the waist of the nebula could not be repro-
duced without this sharp contrast. The image of the
model M3, which did not have a well-defined equatorial
disk, did not have the same kind of dark equatorial fea-
tures seen in IRAS22036+5306 or Gomez’s Hamburger.

We can also draw conclusions about the importance of
inclination angle in viewing bipolar nebulae from our sim-
ulations of an identical nebulae at three different angles
of inclination. The simulated nebula looks very different
when viewed at different angles. As we would expect, the
nebula viewed at an inclination angle of 7/2 radians does
not even look bipolar. A viewer looking at such an ob-
ject from Earth would have no way of knowing it was not
spherically symmetric. Similarly, a viewer looking at the
nebula at an angle of 0.1468 radians might never think



FIG. 7: Left: Image from a simulation, Z;n. = 0.1468 rad, Middle: Image from a simulation, Z;,. = m/4 rad, Right: Image
from a simulation, Z;nc = w/2 rad. All the parameters for the models are the same as in the simulated image shown in Figure

1, except for systemic inclination.

that the same object, viewed at an angle of 7/4 radians,
would look the way it does in Figure 7.

Our model can be used to guess the density distribu-
tions of observed bipolar nebulae and to check the results
of models of physical processes. One of its greatest limi-
tations, however, is that there is no way yet to quantita-
tively compare simulated images to real ones. Addition-
ally, the model assumes a constant grain size, when in
reality there would probably be a dependence of average
grain size on radius. It also does not incorporate a scat-
tering dependence on wavelength or a scattering phase
function.
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