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Various methods have been employed to determine the density and spacing of nucleosomes along
DNA via thermodynamic means. Building from previous models this paper focuses on the use of
J.K. Percus’ mathematical solution to the Equilibrium State of a Classical Fluid of Hard Rods in
an External Field.

THEORY AND BACKGROUND

Each cell in the human body contains over one meter
of DNA. It has long been understood that various com-
paction methods must be employed to keep the DNA
localized in the nucleus of the cell. One such compaction
method is through the use of nucleosomes, a structure
consisting of 1.75 left-hand turns of DNA around 8 core
histone proteins in a super helix.

It has been shown that the positioning of these nucle-
osomes is non-random and exhibits some sequence speci-
ficity in the interaction between the histone proteins and
the nucleic acid base pairs. The purpose of much of the
previous work has been to determine whether the spacing
is purely statistical, obeying the laws of thermodynamics
in its positioning or whether it is the specificity of the
base pair sequencing that determines spacing.

EARLY APPROACHES

We begin our research into nucleosome positioning by
taking everything we know of the system into account.
If we are to believe a purely statistical mechanics and
thermodynamics approach, then we must build an ap-
propriate model.

First, we consider the system of nucleosomes along
DNA and determine that the dyadic axis will be our x
position from the origin. We may then say that a nucle-
osome may be positioned anywhere from the origin to x.
Therefore the next nucleosome may be positioned from x
to x’, the third may be positioned from x’ to x”, and so
on. Since two nucleosomes cannot overlap we say that:

x2 − x1 > a (1)

Where a is the length of a nucleosome, or the distance
between dyadic axes. Since the particles are indistin-
guishable, we know that the partition function will have
the form:

Z =
1

N !
ZN

1 (2)

And Z will be found by summing the probablility that
each particle will be found over some distance along the
DNA suth that:

Z =
∫ L

0

dx1

∫ L

0

dx2... (3)

But we know that each nucleosome cannot go all the way
to L, but only L-na, and we can also substitute x = a +
y. Proceeding accordingly we find:

Z =
∫ L−an

0

dy1

∫ L−a(n−1)

0

dy2...

∫ L−a(n−n)

0

dyn (4)

And remembering that L - a(n - 1) = y1 we obtain:

Z =
∫ L−an

0

dy1

∫ y1

0

dy2...

∫ n−1

0

dyn (5)

Finally, knowing that the volume of an n-dimensional
hyperspace is:

(L− na)n =
∫ L−na

0

dy1

∫ L−na

0

dy2...

∫ L−na

0

dyn (6)

So,

Z((n)(n− 1)(n− 2)...) = (L− na)n (7)

Z =
(L− na)n

n!
(8)

Now that we have obtained an expression for the parti-
tion function, we may use this information for the basis
to the grand partition function. We may set up the grand
partition function in the form:

Q(x) =
∑

N<La

L− an)N

N !aN
eβµN (9)

Where β and µ are the traditional thermodynamic prop-
erties for inverse temperature and chemical potential. In
this case we know that Sterling’s approximation may be
used to find a more discrete value for Q(x).
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DENSITY

The purpose of determining Q(x) is so that it may be
used to find the density of states. We can see that the
sum in Eq. 9 will be dominated by the N value for which
the summand is a maximum and therefore we may utilize
the method of steepest descent to find that term. Then
rearranging terms and expressing in terms of the density
ρ=N

L :

exp[L(ρ ln
1− aρ

aρ
+ ρ + ρβµ)] (10)

Then, taking the derivative in order to maximize,

ln
1− aρ

ρ
− aρ

1− aρ
+ βµ = 0 (11)

By introducing the new variable h = aρ
1−aρ and solving,

we find that the grand partition function becomes:

exp[L(L(ρ ln 1−aρ
aρ + ρ + ρβµ))]

1 + h
(12)

With ρ replaced by it’s value at the extremum. In this
case, the full form of Sterling’s plays an important role
in the solution to Q(x).

Dependence on position from the end of an interval

To determine the density, we must first fix the position
of one of the rods at a position x0 and then calculate the
grand partition function for all of the other rods consis-
tent with the location of x0. The density, γ(x), is then
given by the equation:

γ(x) =
1
a

Q(x− a)Q(L− x)
Q(L)

eβµ (13)

Where a is still the length of a rod and eβµ represents
the fact that every rod carries an eβµ. Now, solving for
any arbitrary x we find that:

γ(x) =
∑

N+1< x
a

(x− (N + 1)a)N

aNN !
e(N+1)βµe−xF0 (14)

This equation holds for any value of a or βµ but in this
case we can see how the density becomes indeterminable
deep in the bulk when we consider a = 1 and βµ=3.5.

UTILIZING PERCUS’ EQUATIONS

According to J.K. Percus, we know that the general so-
lution to the equilibrium state a fluid of one-dimensional
hard cores (as we model our system) is:

βµ(x)+ln ρ(x)−ln z = ln[1−
∫ x

x−a

ρ(ω)dω]−
∫ x+a

x

ρ(z)
1−

∫ z

z−a
ρ(ω)dω

dz

(15)

potential.jpg

FIG. 1: Density of rods as given by (??) with βµ = 3.5.

However, this solution does not help us to find much
of anything so we must determine a way to solve the
equation for the variables that we would like to control.
In order to do so, we followed the method provided by
Vanderlick et. al. to th Percus equations, separating the
equation into two unknown variables, h and x.

dh(x)
dx

= −h(x)[β
dφ(x)

dx
+ h(x)− h(x− σ)] (16)

dl(x)
dx

= −h(x)l(x)− h(x + σ)l(x + σ) (17)

The key to solving these equations was to recast them
into a solvable form. After making substitutions and re-
arranging the limits of integration we find that,

h(x) =
e−βφ(x) +

∫ x

x0
h(x′ − σ)dx′

e−βφ(x)

h(x0)
+

∫ x

x0
e
−βφ(x′′)+

∫ x′′

x0
h(x′−σ)dx′

dx′′
(18)

Once we have h(x) we can solve for l(x), and, using a
similar method as previously described we find that,

l(x) = l(x0)e
∫ x

x0
h(x′)dx′

−
∫ x

x0

e
−

∫ x′′

x
h(x′)dx′

h(x′′+σ)l(x′′+σ)dx′′

(19)
We can solve the equation for h(x) by looking at succes-
sive intervals on the x axis. Then, once we have a solution
for h(x) the solution for ?? gives a way of generating l(x)
in successive intervals in the opposite direction from how
we found h(x). This way we can still find a density for
nucleosomes at the opposite end of the DNA strand.

This method for solving for the density was then trans-
lated to Mathematica so that a distribution for the den-
sity of nucleosomes could be determined. In Mathemat-
ica, performing numerous calculation over an interval
length of our choosing, we could graph the density and
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Potential mu=-9.jpg

FIG. 2: Density of Nucleosomes as given by Percus using
Venderlick method with βµ = −9.

see that it is, in fact, oscillatory with the amplitude of
the oscillations evening out toward the bulk area of the
interval.

Sinusoidal Potential

Since determining the probability density of nucleo-
somes at locations along DNA was straightforward with
respect to a constant potential we next looked into the
case of a sinusoidal external potential acting on the nu-
cleosomes. In a natural system like that of nucleosomes
in a cell it is more likely that the external potential will
oscillate and, thus, it is important to make sure that our
method holds up for oscillating potentials.

In this case I replaced the constant potential directly
in Mathematica and then observed the resulting density
distribution for different amplitudes of the potential as
well as a range of values for sinπx. An example of the
probability density deep within the bulk is shown in the
following figure.

Insert figure Potential with Sin(1/4 pi).jpg Probabil-
ity density of nucleosomes deep within the bulk from a
sinusoidal potential.

Once we know that our method works for a sinusoidal
potential, the next step is to analyze the response of the
density to a sinusoidal potential in order to understand
the effects of the potential on the positioning of nucleo-
somes.

Here we assume that the potential is small so that we
can make use of linear response approximations. First,
we rewrite the Percus equation with variables consistent

rho 5.jpg

FIG. 3: The solution for B/ρ0βA when σρ0 = 0.5 as a func-
tion of kσ.

with the Vanderlick method

βµ(x)+ln(σρ(x)−βµ = ln[1−
∫ x

x−σ

ρ(x′)dx′]−
∫ x+σ

x

ρ(x′)

1−
∫ x′

x′−σ
ρ(x′′)dx′′

dx′

(20)
Next, we assume that when there is no sinusoidal po-

tential we can neglect µ(x) and ρ(x) → ρ0, so Eq. ??
becomes

lnσρ0 − βµ = ln (1− σρ0)−
σρ0

1− σρ0
(21)

Which has the implicit solution σρ0 = h0
1+h0

, where

h0 = eβµ−h0 (22)

The is the same equation for the density deep in the
interior of the hard-rod gas that we calculated earlier.
We can now expand the density using

u(x) = Aeikx (23)

ρ(x) = ρ0 + Beikx (24)

By plugging these back into Eq. ?? and then solving, we
find that

B

ρ0
= − βA

1 + 2 σρ0
1−σρ0

sin kσ
kσ + 2( σρ0

1−σρ0
)2 1−cos kσ

(kσ)2

(25)

Plotting this solution for different values of σρ0 we see
that for σρ0 = 0.5 we get

Or if we use σρ0 = 0.9 we can see that
Finally, if we plot the smallest value of kσ at which

there is a maximum in the response as a function of σρ0

It is important to note that the maximum occurs when
σρ0 = 1.
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FIG. 4: The solution for B/ρ0βA when σρ0 = 0.9 as a func-
tion of kσ.

linear fig 3.jpg

FIG. 5: kmaxσ/2π vs. σρ0.

FUTURE WORK

After completing the Mathematica program that
worked to our liking for both constant and sinusoidal ex-

ternal potentials, the final step is to move on to discrete
data for the external potential of the chemical potential
of yeast DNA base pairs. In doing so there is little change
that must be made to the method that we have already
developed. In Eqs. ?? and ?? the integral is replaced
with sum for the discrete values of the potential at par-
ticular base pairs in reference to their distance from the
beginning of the DNA strand.
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