Guide to Using runl.cpp

Samuel Johnson Stoever
Cornell University
sj324@cornell.edu

Summer 2008 UCLA REU Program

1 Preliminaries

1.1 Language, Software, and Hardware

The simulation was written in C++ corresponding to the ANSI/ISO C++ standard. The program makes use of
various C++ Standard Library files: iostream, cstdlib, fstream, and cmath. The program has been successfully
compiled (using the GNU Compiler Collection (GCC)) and run on a Mac OS X 10.5.4 computer with a 2.8 GHz
Intel Core Duo processor and 4 GB of RAM, and on a Ubuntu 8.04 ‘Hardy Heron’ Linux computer with a 1.6 GHz
AMD Turion 64 processor and 2 GB of RAM.

1.2 Goals and Outline

The program was the result from an REU project entitled ‘Monte Carlo Simulations of Extragalactic H and He
Cloud Ionization and Heating from Quasar Emissions’ at UCLA during the summer of 2008. The research advisor
was Prof. Furlanetto of UCLA.

The program starts with a photon with pre-determined energy, the program then selects if the photon ionizes
an HI, Hel, or He IT atom via the random generator and photoionization cross-section data. The ionization event
then creates a photoelectron with a definable energy which then interacts with other matter in the ‘cloud’ - we
randomly select processes out of: electron-impact ionization of H I, He I, or Hell, electron-impact excitation of H I,
He I, or He II, and electron-electron coulomb interactions that cause the energetic electron to lose energy and heat
the ‘cloud.” The energy of the main photoelectron is followed, as are the creation of secondary electrons (through
the ionization processes), excitation to Ly« producing levels in the H atom, and how much heat is imparted on the
gas via electron-electron interactions. The effects of the secondary electrons on the gas are also followed until the
energies of all electrons are below the 10.2 €V threshold (where no more excitations or ionizations can occur).

1.3 Numerical Recipes

The simulation makes use of code provided by the ‘Numerical Recipes’ series of books, written by William H. Press,
Saul A. Teukolsky, William T. Vetterling, and Brian P. Plannery. The random number generator used, rani, is
taken from a 2nd edition, ‘Numerical Recipes in C’, while the interpolating functions, spline and splint, are
taken from the 3rd edition printing, ‘Numerical Recipes in C++, in order to take advantage of the object-oriented
programming capabilities of C++. Discussions of these functions and classes follow in their appropriate sections of
the guide.

1.4 Compiling

As long as the required files are present, and the required libraries (C++ Standard Library) are available, one can
simply compile via the GCC:
g+ + — o runl runl.cpp

and run the program through the usual way (e.g., ./runl).

1.5 Warnings

The code has not been tested on 64-bit compilers, and some of the definitions instituted by the NR3.h header file
may not work well with 64-bit compilers.

2 General Physical Parameters and Constants

2.1 Units

The program considers all activity to take place within the realm of CGS units.

2.2 Particle Densities

We use the following functions to describe the particle densities in our monte carlo simulation (where is Q,h? ~
0.024). The Hydrogen density (represented by nSUBh in the code) is given by

ng = (856 x 1079) - k2 - (14 2) em

The Helium density (represented by nSUBhe in the code) is given by:

_ 1024
MHe =4\ 12024) M

and finally, the electron density (represented by nSUBe in the code) is given by:

-3

ne = (9.83 x 107%) - QA% - (1 + 2)° em

These are all obviously functions of z (the redshift age of the universe), which is represented in the program via the
variable zAge. The value for n. is used in the calculation for the Coulomb Logarithm (used in the electron-electron
coulomb interaction cross-section), while all three of these values are used to determine interaction probabilities
within in the monte carlo code.

2.3 The Coulomb Logarithm

We require the use of the coulomb logarithm to calculate cross-section data for the electron-electron heating inter-
actions. We obtain this function from Spitzer 1962, and it is defined as

InA
where

A= —
2e3

1

3 [k3T13]2

=
for electron-electron interactions. In the expression above, e is the elementary charge, k is the Bolzmann constant,
T is the temperature, and n. is the electron density. When calculating the Coulomb Logarithm, the program
takes into account temp and nSUBe, the temperature and the electron density, respectively. Due to the nature of
logarithms, the Coulomb Logarithm is fairly insensitive to even moderate changes in 7" and n.. In A is represented
by coulLog in the program.

Calculation of coulLog requires the use of < cmath > for log() and pow().

2.4 Ionization Potentials

This program requires the use of ionization potentials primarily to describe the energy of the primary photo-
electron that is produced as a product of the initial photoionization. The ionization potentials are stored in
the array ionPotential where the ionization potentials for H I, He I, and He II are stored as ionPotentiall0],
ionPotential[l], and ionPotentiall2], respectively. The values in use in the array are {13.598, 24.586, 54.4}.

2.5 Excitation Energies for Hydrogen I

th

The excitation energies required for the Hydrogen I electron to make a jump from the n = 1 state to the n'" state

can be given by an analytic equation
1
E,=136- (1—2> eV .
n

The electron incident on the Hydrogen atom must then lose E,, one it has been selected to excite the atom to the
th
n'" state.

2.6 Excitation Energies for Helium I

The excitation energies for the He I atom were retreived from the ‘NIST Atomic Spectra Database Levels Form’
(http://physics.nist.gov/PhysRefData/ASD /levels form.html)(retreived 13 August, 2008). The data are stored in
the array exitHeIenergies. Refer to the source code to view the values contained.

2.7 Excitation Energies for Helium II

The excitation energies required for the Helium II electron to make a jump from the n = 1 state to the n'" state
can be given by an analytic equation

B, =544- (12) eV .
n

2.8 Energy Distributions of Secondary Electrons after electron-impact ionization

In order to calculate the enrgy loss of the primary and to tabulate the energies of the secondary electrons produced
in this process, we decided to use the probability density

1

so that our function is

Emaw 1
9(Emaz) = /0 Tg/é)de (1)

where €4, is given by
Emaz = % (E-1)

and where F is the energy of the incident electron and I is the ionization potential. The constant £ is equal to
8 eV, 15.8 €V, and 32.6 eV for H I, He I, and He II, respectively. Because of the probabilistic nature of the energy
distribution, the difficulty of the integral, and the desire to not institute a root finding function, we generated a
table for g (emaz) from each value €4, € [1, 600] for each element, and wrote a procedure (contained in the function
electronEnergy) that would use these tables to find the closest integer energy to the electron energy suggested by
the generated random number. If one has the desire to find a more precise function, the aforementioned tables can

easily be interpolated. The information presented in this section was taken from Dalgarno, Yan, and Liu (1999),
some of which was adopted from the work contained in Opal, Peterson, and Beaty (1971).

3 Header Files and Packages in runl.cpp

3.1 iostream, cstdlib, cmath, ctime, fstream, and iomanip

These header libraries are from the C++ Standard Library.

3.2 nr3h

This file is the Library file from the ‘Numerical Recipes in C+-+’ book (see section 1.3). The file is required to run
our interpolating program, and provides compiler independent definitions for certain data structures used therein.

3.3 interp 1d.h

This file contains our interpolation program. The source code was taken from ‘Numerical Recipes in C++’ (see
section 1.3). The interpolation file creates the class template that can be constructed into a function by feeding
VecDoub (a data strcture defined in nr3.h) arrays via the constructor

Spline interp function(xVecDoub,yVecDoub);
and the interpolated value at a given x is called by:
function.interp(x);

Also, see utilities genl and gen2.

3.4 photoion.cpp

This file provides the function photoion CrossSection(double E,int species), which gives the photoionization
cross-sections for a photon with energy F. The variable species is 0 for HI, 1 for Hel, and 2 for Hell.

3.5 elecexitHelIl.cpp, elecexitHeIl.cpp, and elecexitHeIshell3.cpp

These files provide the electron impact excitation cross-sections at different energy levels for Hell and Hel.

3.6 elecInteracts.cpp

This file provides the function for the cross-section of the electron-electron Coulomb heating interactions.

3.7 randoml.cpp

This file contains the random generator function ranl as described in the book, Numerical Recipes in C, 2nd ed.
(see Section 1.3). This routine uses the system time as the seed for the random number generator. Once the
function has been seeded, a random number is generated with the function call:

randomnun = ranl (idup) .

3.8 exitHelfunction.cpp

This file contains the array exitHeIenergies[] which contains the excitation energies for a number of excitation
transistions in the Hel atom. The specific transitions are documented in the file itself.

3.9 energyLoss.cpp

This file contains the function energylLoss(int indexl, int nlevel) that provides the the energy loss from the
ground state to the nlevel state. index1 = O corresponds to HI and indexl = 1 corresponds to Hell.

3.10 giantData.cpp

This file contains 3 large arrays, each corresponding to values obtained from the interpolation of the integral in
Equation 1 (see Section 2.8). The integral is a complicated one and it would take an excessive amount of time to
accurately integrate this function at a certain value every time it is needed. The integration was carried out in
Mathematica 6.0.

Along with the arrays, this file contains the function electronEnergy (int specimen, double randomnum, double energyl)
that processes the interpolation arrays, and returns the energy of the secondary electron produced.

4 Executable Files

Although the runi.cpp file is the main executable to run the simulation, it is only designed to simulate photons of
one particular energy level per run. Because of this I have designed a simple script generator, scriptGen.cpp, that
will generate a script that will run ./runi for each desired energy, that will output the results to a different file. The
scriptGen routine also writes the program mean.cpp into the script, so that the use of scriptGen also generates
the final file that can be plotted, the mean of the results generated by runl.cpp at each value of the starting photon
energy.

4.1 Example Simulation Run

We now describe how to run a simulation that encompasses every integral energy starting at 1 eV and ending at
900 eV, for initial photon energy, at 50,000 trials per energy level. We then want the mean energy converted into
Lya photons, and the mean energy converted into heat via electron-electron Coulomb heating. We start by editing
the scriptGen.cpp file, and setting the variables: begin = 1, end = 900, increment = 1, and iterations = 50000.
We then compile necessary files:

g+ + — o runl runl.cpp

g+ + — o mean mean.cpp
g+ + — o scriptGen scriptGen.cpp

We now use the script generator to obtain an appropriate executable script:
./scriptGen — fhml.dat — gpml.dat
we then change the permissions of the script files so that we can run it, and then we run the script:
chmod 777 scriptl.sh

./scriptl.sh

The simulation should then run, and the plottable files are located in the subfolder meanoutput under hmi.dat and
pml.dat for the electron heating energy and the Lyman a energy, respectively.

5 Command Line Arguments

5.1 For runl.cpp

An example for the usage of command line arguments for runi.cpp could be:
./Jrunl —i2000 — 01000 — hdata/heat.dat — ldata/lyalpha.dat .

This will make runi iterate 2000 times with an initial photon energy of 1000 eV where it will output the heating
energy (per iteration) and energy put into lyman « photons into the files heat.dat and lyalpha.dat, respectively,
which are both in the subdirectory data.

It should be noted that there can be no space between the ‘—x’ command and the parameters of the command,
i.e., 2000.

The available commands are

| Command | Typical Usage | Effect
—1i —140000 The program will simulate the outcome of 40000 photons at the given energy
—e —e900 The initial photon will have an energy of 900 eV
—h —hdata/file2.dat Will output Coulomb heating energy results to data/file2.dat
-1 —ldata/file3.dat Will output the amount of heat released to Lyman « photons to the file.
-z —z3.5 Will set the age of the universe to z = 3.5

5.2 For scriptGen.cpp

The scriptGen.cpp utility program has two command line options, —f and —g. These two options set the filenames
(without the .dat postfix) for the outputs of the mean program, which will be in the meanoutput folder. The —f
option sets the output file for electron-electron Coulomb heating, and the —g option sets the output file for Lyman
« energy. For example calling

./scriptGen — fpml — ghml

sets the outputs to meanoutput/pml.dat and meanoutput/hmil.dat.

5.3 For mean.cpp

Since the mean program is generally only used when using scriptGen we omit a detailed description of the command
line arguments. In short, there are 6 options, —e, —i, —o, —j, —p, —f. All but the first and last options deal
with the input and output files of the program.The —e inputs the current energy of the initial photon (e.g., —e900)
to the program, and the —f option flags the program to erase the outputfile before writing new lines, so it should
only be used for the first calling of mean for a given simulation at multiple energies.

