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Abstract

This research project sought to determine the e�ects of an added degree of mechanical freedom

to the tunnel splitting of a single molecule magnet. We consider both mechanical rotation and

vibration (ie tortional oscillations) with the later consisting of an analytical and numerical portion

which appear thus far to be in good agreement. The �rst part of this paper will discuss some

background information regarding single molecule magnets. Following this will be a description

of several theoretical papers proposing e�ects of coupling between an added degree of mechanical

freedom and the macrospin of a single molecule magnet. These served as motivation to consider the

e�ects of this coupling on the tunnel splitting and magnetopolariton formation in these molecules.

This will be followed by our research, �ndings and possible implications of the data found.
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I. BACKGROUND

A. Single-Molecule Magnets

Single-molecule magnets (SMMs) have been widely studied due to their ability to display

both classical and quantum properties simultaneously. These molecules contain several

transition-metal ions, have large spin numbers and possess easy axis anisotropy. They lie

between microscopic (quantum) and macroscopic (classical) sized systems in the so called

mesoscopic range; which accounts for their ability to bridge the quantum and classical worlds.

For example, Fe8O2OH12tacn6Br8 andMn12O12(CH3COO)16(H2O)4, called Fe8 andMn12

respectively, can relax by tunneling which is forbidden classically. In addition, this quantum

tunneling process can often be observed at the same temperature and on the same time scale

as the classical process of thermal relaxation. Another interesting aspect of SMMs is their

ability to exhibit properties similar to nanomagnets which have been considered for use as

quantum bits, or qubits, in quantum computing. Another possible application for SMMs

lies in memory devices. To implement memory systems composed of SMMs, however, would

involve the ability to write, store and read the spin information of these molecules. Each of

these aspects has been, and currently is, under study [1].

In SMMs, an axial zero-�eld splitting leads to the division of the spin state, S, of a

molecule into (2S+1) levels which correspond to di�erent projections of the molecule's total

spin on its easy anisotropy axis. These levels can be described by their spin quantum number

m, where -S=m=S. The energy of each level is proportional to the square of its quantum

number by a constant D. For SMMs, D is negative yielding an energy barrier between the

m=S and m=-S states (See �gure 1). This anisotropy barrier results in doubly degenerate

ground states at zero �eld[2]. Also, due to strong spin-spin coupling in these types of

molecules, they retain an orientation such that the spin of the entire molecule is S (ie �S or

S). A Mn12 molecule and its corresponding double well potential are depicted in Figure 1.
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Figure 1: Left: Diagram of Mn12 (S=10) [2]. Right: Plot of the potential energy versus the mag-

netization direction for a SMM with an S= 10 ground state experiencing axial zero-�eld splitting,

DSz , where Sz is the zth component of the electron spin operator. The diagram is for zero external

magnetic �eld[3].

B. Applied Fields and Tunneling

In the mid 1990's there were a number of experiments performed that suggested the pos-

sibility of quantum tunneling in SMMs[2]. In 1996, however, the �rst concrete experimental

evidence of such activity was provided by Freidman et al [4]. In this experiment, as they

swept a magnetic �eld along the easy axis, instead of �nding the smooth hysteresis curves

expected by what was known about thermal relaxation, they instead found plateaus at cer-

tain values of the magnetic �eld. This procedure was repeated at di�erent temperatures.

The results are shown in Figure 2. What they found were plots in which the hysteresis loops

closed in on themselves at higher temperature indicating that the process of relaxation was

assisted by thermal activation. In addition, however, they realized that the relaxation could

not be entirely a thermal process due to the fact that the location of the steps, or plateaus,

was independent of the temperature. The cause Friedman et al proposed was that tunneling

is allowed to occur when energy levels on opposite sides of the well come into resonance. This

tunneling occurs only for certain values of the magnetic �eld and is assisted thermally due to
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the fact that, as molecules are excited, the e�ective barrier height is decreased. The splitting

between the corresponding levels due to tunneling is referred to as the tunnel splitting. At

su�ciently low temperatures the SMM can be described by the e�ective spin Hamiltonian

as follows:

H ≈ −D(Sz)
2 − gzµBSzHz − A(Sz)

4 +H ′, (1)

where the �rst term yields the anisotropy barrier, the second is the Zeeman energy, the third

is the next highest order anisotropy term and H' includes all the symmetry breaking terms

that do not commute with Sz. The energy of the levels, m, as a function of the applied

magnetic �eld are shown in Figure 3 (d and e).

Figure 2: Magnetization as a function of the �eld strength forMn12[4].

Another remarkable experiment depicting tunneling occurred in 1999 when Wernsdorfer

and Sessoli measured the tunnel splitting in Fe8 as a function of a magnetic �eld applied

at several di�erent angles in the plane perpendicular to the easy axis. Their results are

shown in Figure 4. Along the so called medium axis, or φ = 90◦, in Figure 4, the tunnel

splitting increases monotonically with magnetic �eld. Along the hard axis, or φ = 0◦,

however, the tunnel splitting oscillates periodically before exhibiting monotonic growth as

is expected. This is due to the destructive interference at periodic intervals of the two
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dominant tunneling paths which wind around the hard axis as predicted by Anupam Garg

[14].

Figure 3: a) Double well potential in the absence of magnetic �eld. b) Double well potential for

the N=4 step in the presence of a magnetic �eld without the fourth order term of the Hamiltonian

(Eq1). c) Double well potential for the N=4 step in the presence of a magnetic �eld with the

fourth order term of the Hamiltonian included. d) Energy crossing for states m of the Hamiltonian

without the fourth order term e) Energy crossing for states m of the Hamiltonian with the fourth

order term[2].
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Figure 4: Left: Energy crossing for states m of Fe8 for a �eld applied along the easy axis. ∆

represents the tunnel splitting. Right: Tunnel splitting as a function of the �eld in the plane

perpendicular to the easy axis. [6]

C. Mechanical Motion

Due to the magnetic properties of single-molecule magnets, rotation of these molecules

induces a magnetic �eld[14]. In this project, we have studied the e�ect of mechanical rotation

and vibration, along with the �elds induced thereby, on the tunnel splitting of the molecule.

Motivation for this research comes from several places. Recently, there have been a number

of papers considering the coupling between mechanical motion and the spin precession in

magnetic clusters. One such paper was published by A. A. Kovalev and G. E. W. Bauer in

August of 2003 [12]. In this paper, they consider the coupling of the spins in a ferromagnetic

�lm to the mechanical motion of a cantilever to which this �lm is attached. A �gure of the

geometry they consider is shown below.
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Figure 5: A nanomagneto-mechanical cantilever supporting magnetovibrational modes. On a di-

electric substrate (such as Si) a single-domain ferromagnetic �lm is deposited at the free end[12].

There is constant magnetic �eld applied along the y direction and an oscillating one alond

the x direction. The magnetization M of the ferromagnet precesses around the e�ective

magnetic �eld Heff according to the Laundau-Lifshitz-Gilbert equation (2).

dM

dt
= −γM×Heff + αM× dM

dt
, (2)

They show theoretically that the ferromagnet e�ectively absorbs microwaves and turns them

into a precessing magnetization, which via the magnetovibrational coupling can be trans-

formed into mechanical motion. In a similar paper in June of 2009, R. Jaafar and E.M.

Chudnovsky consider a microcantilever to which a SMM has been attached[7]. By applying

a weak ac magnetic �eld the spin of the molecule is forced to oscillate. These oscillations,

then, are required to coincide with mechanical oscillations of the cantilever in order for the

total angular momentum to be conserved. Therefore, when the frequency of the applied

magnetic �eld comes into resonance with a resonant mode of the cantilever one would ex-

pect the cantilever to oscillate. In this Letter, Jafaar and Chudnovsky propose that it is

possible to detect the quantum oscillations of the spin of an SMM through its resonant

coupling to the mechanical modes of a microcantilever. They also suggest a possible exper-

iment to demonstrate this e�ect in which tunneling or force microscopy is used to measure

the displacement of the cantilever. These displacements can then be compared with their

expected theoretical displacements for the �rst three modes of the cantilever they describe.

Further motivation for our present research stems from a publication in January of 2010, by

Jafaar and Chudnovsky in collaboration with D.A. Garanin[1]. In this paper, they consider
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the e�ect of mechanical rotations on a single molecule magnet between conducting leads.

The diagram of their set-up and their results are shown in Figure 5.

Figure 6: Left: Mn12 molecule bridged between two leads. Right: Typical time dependence of the

rotation angle φ. The inset shows the �ne structure of the oscillations [1]

Previously, Chudnovsky and Garanin had demonstrated that the quantum states of a

SMM that is free to rotate are di�erent than those of one �xed in a crystal[8]. This motivated

them to consider an intermediate situation in which the molecule is bridged between two

leads. What they found from their theoretical considerations was that oscillations of φ

are excited when the time dependent distance between the spin levels coincides with the

frequency of the oscillations of the molecule. These demonstrations of magneto-mechanical

coupling are what prompted us to consider the possibility of using the mechanical motion of

the molecule to a�ect its tunnel splitting. For small tunnel splitting, the oscillations between

spin states is slow, allowing time for decoherence to occur and the spin to localize. This is of

interest because, if the e�ect of rotation can be made large enough in practical setting, such

mechanical motion could be used to increase the tunnel splitting, e�ectively rewriting the

spin information of the molecule. This, then, would enable the implementation of SMMs in

high-density magnetic storage.
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II. RESEARCH METHODS AND FINDINGS

A. Mechanical Rotation

Due to the magnetic properties of single-molecule magnets, rotation of these molecules

is equivalent to applying a magnetic �eld. In this project, we have studied the e�ect of this

mechanical rotation, and the �eld induced thereby, on the tunnel splitting of the molecule.

What we found was that, for a signi�cant change in tunnel splitting to occur, the frequency

of rotation must be very large. In fact, a �eld induced by rotation of just 0.1 Tesla requires

frequency of rotation of 3 GHz. In a paper entitled �Rotational Actuators based on

Carbon Nanotubes� by A. M. Fennimore et al [9], Fennimore and his colleagues describe

the construction and successful operation of a nanoscale electromechanical actuator. This

actuator is depicted in Figure 6 and consists primarily of a rotatable metal plate that is

attached to a multi-walled carbon nanotube. After either end of the nanotube is attached

to a surface, depicted by A1 and A2 in Figure 6, the outer nanotube wall is severed on

either side of the rotor which allows the center section to spin freely. Small voltages are

then applied at positions S1, S2 and S3 in Figure 6 which capacitively attract the rotor and

drive the nanomotor.

Figure 7: Left: Diagram of the nanoscale electromechanical actuator produced by Fennimore et al.

Right: SEM image of the same actuator[9].

According to Fennimore et al, such a nanomotor can be operated in the GHz range. Thus,

such a high frequency requirement is not entirely impracticable.
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B. Mechanical Vibration

We then considered the e�ect of mechanical vibration of the molecule. There have been

two portions to this research so far. One has been analytical and the other numerical. Our

general Hamiltonian for each case is as follows:

Ĥ = (â†â+
1

2
)~ωr + e−iŜyφ̂ĤAe

iŜyφ̂ + γ~ŜB, (3)

where â† = 1√
2
(− d

dφ
+ φ) denotes the creation operator and â = 1√

2
(− d

dφ
− φ) denotes the

annihilation operator. The �rst term represents the motion of the oscillator, the second, the

anisotropy of the molecule rotated by an angle, φ, and the third, the external magnetic �eld.

In single molecule magnets, there is a much larger distance between the levels of the molecule

than between the di�erent mechanical modes of a given level. Because of this, to consider

the crossings between mechanical modes we consider the Hamiltonian to be projected onto

the two lowest states of the molecule such that HA describes a two level system considering

only the lowest two levels of the molecule and taking the e�ects of the higher levels (which

are comparatively far away) to be negligibly small.

The general form of HA from equation 2 can be expressed as:

ĤA = Ĥ‖ + Ĥ⊥, (4)

where Ĥ‖ commutes with Sz and Ĥ⊥is a perturbation that does not commute with Sz. The

eigenstates, |±S >, of Sz are degenerate ground states of Ĥ‖. Ĥ⊥, however, slightly perturbs

the | ± S >states. Calling the normalized perturbed states |ψ±S >, the ground state and

the �rst excited state become:

Ψ± =
1√
2

(|ψS > ±|ψ−S >), (5)

These two lowest states of the molecule, therefore, correspond to two eigenfunctions of the

molecule recast as the symmetric and antisymmetric combinations of some other states which

are approximately the states which point in one direction of minimum energy or the other.

The crossings of mechanical modes we consider are very similar to the points of reso-

nance discussed earlier and shown in Figure 3. The di�erence is that now we are considering

states of di�erent phonon number rather than states of di�erent spin number. In the ana-
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lytical portion, we consider the points of anti-crossing for states of di�erent phonon number

individually. Our projected Hamiltonian is as follows:

Ĥ =

â†â+ 1
2

+W ∆D(iα)

∆D†(iα) â†â+ 1
2
−W

 , (6)

where W denotes the magnetic �eld, ∆ denotes the tunnel splitting and D(iα) = eiα(â
†)+iα(â)

denotes the displacement operator. Implementing �rst order perturbation theory to obtain

the Hamiltonian in the basis of the two degenerate states yields:

Hn,m =

 n+ 1
2

+W E(n,m)∆

E ∗ (n,m)∆ m+ 1
2
−W

 , (7)

The two Fock states are denoted by n and m; the numerical value of n, m denoting the

phonon number. In addition, we use the matrix elements of the displacement operator with

respect to Fock states implemented by Perez-Leija et al [10] shown below:

E(n,m) = (−iα)m−ne−
α2

2

√
n!

m!
Ln−mn (α2), (8)

Ln−mn (α2) denotes the Laguerre polynomial. Two examples of the results we obtained are

displayed below:
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Figure 8: Left: Graph of the eigenvalue solutions for n = 0, m = 0 as a function of the magnetic

�eld, W, where α = 0.1 and ∆ = 0.1. Right: Graph of the eigenvalue solutions for n = 0, m = 1

as a function of the magnetic �eld. Again α = 0.1 and ∆ = 0.1.

Also of note, is the dependence of the tunnel splitting on the parameter α. Alpha is

de�ned as twice the spin multiplied by the value of the delocalization of zero point oscillations
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(See equation 8):

α = 2Sx, (9)

where x =
√

~
2ωrIz

and ωr =
√

k
Iz
; x represents the delocalization of zero point oscillations,

ωr represents the frequency, Iz the moment of in inertia and k the tortional spring constant.

The value of x corresponds to the angle for which quantum mechanical e�ect should be

seen, ie to see quantum mechanical e�ects you must be able to measure the angle with this

precision. The proportionality of alpha to S shows that we can probe quantum mechanical

e�ects with more sensitivity. There is an interesting quantum property that arises in our

analytical data in that the tunnel splitting oscillates with an increasing value of alpha.
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Figure 9: Graph of the dependence of the tunnel splitting on alpha for Left/Top: n = m = 0,

Right/Top: n = m = 1, Left/Bottom: n = m = 2, and Right/Bottom: n = m = 3.

This dependence on alpha allows for the tunnel splitting to be tuned by a judicious choice

in alpha. Following our analytical considerations, we looked at the e�ect of mechanical

vibrations through a numerical model. This numerical calculation enabled us to consider

the crossings of all states with di�erent phonon number simultaneously. A sample of our
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results is shown below:
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Figure 10: Numerical results depicting the energy levels (and thus tunnel splittings) as a function

of the magnetic �eld for α = 0.1 and ∆ = 0.1.

Tunnel splitting behavior can be observed at zero magnetic �eld and magnetopolariton

behavior at crossings for crossings in the presence of magnetic �eld. Upon comparison of our

numerical and analytical results we obtained good agreement. A plot for the crossing of a

state containing one phonon with one containing no phonons is shown in Figure 9. This plot

superimposes the analytical data with the numerical calculations enabling a comparison at

the crossing point. In each case anti-crossing, or polariton, behavior occurs.
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Figure 11: Superposition of the analytical and numerical results as a function of the magnetic �eld

for n = 0 and m = 1 where α = 0.1 and ∆ = 0.1.
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C. Future Study and Conclusions

In a related study published in Nature in 2010 by A.D. O'Connel et al, it is shown that

it is possible to cool a mechanical mode to its quantum ground state by using a microwave

frequency mechanical oscillator coupled to a quantum bit. They also show that you can

controllably create single quantum excitations, or phonons, in the resonator. Figure 11 de-

picts the change in the frequency of the qubit as it is tuned through the resonator frequency.

Here there is a splitting depicted similar to what we expect to see from the coupling of

mechanical oscillations to the macrospin of an SMM. In both the experiment shown here

and our theoretical considerations the coupling of mechanical motion to a two-states system

is considered. The fact that such behavior was experimentally found in this very similar

system serves as further motivation to look for it in the case we describe.

Figure 12: Qubit spectroscopy, showing Pe as a function of qubit frequency and microwave fre-

quency. The qubit frequency behaves as expected, with a prominent splitting as the qubit is tuned

through the resonator frequency.

For the case of a SMM attached to a carbon nanotube nanomotor, we �nd α ∼ 10−2 .

To obtain this value we take k ∼ 10−18N ∗ m and Iz ∼ 10−34kg ∗ m2. This value is not

large enough to observe supression of tunneling by the tuning of alpha. It is, however, large

enough to observe the e�ect of magnetopolariton formation in these molecules. In previous

experiments, such as that performed by Wernsdorfer and Sessoli in 1999, small splittings

have been observed by Landau-Zener transitions [11]. We believe such techniques can also
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be employed to detect the splitting in this case. In the case of the molecule bridged between

conducting leads, we �nd α ∼ 10. To �nd this we take ωr ∼ 109s−1and Iz ∼ 10−41kg ∗m2.

This large of a value for alpha would enable the experimental observation of the supression

of tunneling if alpha was tuned accordingly.

In conclusion, we have been able to show theoretically that magnetopolariton behavior

occurs in single molecule magnets when their magnetic moment becomes coupled to an extra

degree of mechanical freedom. This e�ect could be applicable in a number of ways. One

possible implementation would be to use the knowledge of the frequency and tunnel splitting

to make precise mass measurements. In addition, if the e�ect of rotation can be made large

enough in practical setting, such mechanical motion could be used to increase the tunnel

splitting, e�ectively rewriting the spin information of the molecule. This, then, would enable

the implementation of SMMs in high-density magnetic storage. Also, the implementation of

tortional oscillations could be useful for quantum spin manipulation. The next step in the

research will be to consider the molecule Hamiltonian in its full form instead of projecting

it onto the two lowest states. This will enable us to determine the corrections needed to

account for the interference of higher energy levels.
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