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1 Introduction 

Microscopy has incited many of the greatest revolutions in scientific history. In 

particular, these inventions have sparked paradigm shifts in biology, and discoveries like the 

structure of DNA are indebted to such studies. The development of the field spans from recent 

work like scanning electron microscopy and atomic force microscopy to the original optical 

microscope, which dates back hundreds of years.  

However, despite the legacy of the field, many structures remain difficult to probe with 

current methods. For example, many complex, non-crystalline structures remain largely 

unexplored at the nanoscale. These limitations stem from the fundamental properties of the 

imaging particles used. The diffraction limit prevents optical microscopes from imaging details 

significantly finer than the wavelength of light used. Electron microscopes have much shorter 

wavelengths at their disposal, but the small penetration depth can prevent full structure 

determination. While x-ray crystallography allows full, atomic resolution images of samples, it 

requires vast arrays of identically oriented samples, which is often not feasible for amorphous 

structures like glass and complex biological matter. 

Diffraction Imaging has, in recent years, promised to circumvent many of these 

limitations. Novel algorithms for solving the phase problem and high-flux coherent light sources 

are enabling imaging with a wide range of electromagnetic wavelengths. In addition, the 

technique does not rely on lenses, which avoids problems associated with focusing short-

wavelength light. A coherent light source and suitable detector suffice to produce quality 

images. 

The focus of this article is on developments in a recent addition to diffraction imaging 

called Ankylography. Ankylography generalizes diffraction imaging to three dimensions in 

certain cases. Before going into the details of this technique, a review the two dimensional case 

is appropriate. 

 

2     Coherent Diffraction Imaging 

In conventional coherent diffraction imaging (CDI), light scattered from a finite sample is 

directly measured at a detector placed in the Fraunhofer region. In this region, where the 



diffraction angle θ is small enough that it satisfies the relation        , the intensities 

measured at the detector satisfy: 

 

                                    (1) 

 

Where g(x,y,z) represents the scattering amplitudes of the object, x’ and y’ are the 

detector coordinates and F is a Fourier transform. z’ = 0 signifies that no information along the 

beam direction axis is contained in the diffraction pattern except for the zero order term, which 

is equivalent to an integral along the z (a projection). This is the basic result of Fourier optics1. 

Finally, conventional CDI requires that the object be bounded, and that outside this bounding 

region, the object’s amplitudes must be zero. 

The Fourier transformation is invertible, so one might expect the above relation to easily 

yield information about the object. However, the phase is not measured directly, so the Fourier 

transform cannot be immediately inverted. Fortunately, it has been found that the phase may 

be recovered by oversampling the diffraction pattern. 

Oversampling, simply put, is measuring the diffraction pattern more finely than is 

required for inversion of the Fourier transform (sampling higher than the Nyquist frequency)2. If 

an object is of finite extent, than the spatial 

frequencies in its diffraction pattern are 

limited. Without going into the mathematical 

details of Nyquist-Shannon Sampling Theorem, 

this can be made intuitive by thinking of the 

object as the Fourier transform of the 

diffraction pattern (which is correct up to a 

phase factor). The diffraction pattern is band-

limited because the object is zero outside some 

finite region (this finite region is called the 

support). Therefore, there is a maximum level 

of detail contained in the diffraction pattern, 

and sampling more finely than the highest band 

yields redundant information (as illustrated in 

figure 1). Diffraction imaging utilizes this 

redundant information, and the extra 

constraints allow determination of the unmeasured phase3.  

Figure 1: The left images are R-space and the right images 
are their Fourier transforms. The second diffraction pattern 
is sampled at twice the level of detail, but the IFFT of the 
diffraction pattern only contains a zero-padding region; no 
new information about the object is present 



CDI reconstructs the phase by use of an iterative algorithm. The first efficient algorithm 

developed was the Hybrid Input Output (HIO) algorithm3. In this method, a random phase guess 

is chosen for each point on the diffraction pattern. Then, an inverse Fourier transform obtains 

the first estimate of the object. In general, this real-space image does not have a finite support 

(i.e. it does not have a finite region outside which its amplitudes are zero). As CDI requires that 

the object be have this property, the algorithm enforces the constraint by pushing the 

amplitudes to zero using the following relation: 

       
  

       
  

Where gk’ is the object estimate with the Fourier modulus constraint enforced and gk is 

the object domain without this constraint enforced3. This particular combination of g and g’ is a 

subset of a general class of what are called difference maps. These difference maps generalize 

the HIO, and the underlying theory explains why the HIO is so much more efficient than 

previously developed algorithms (such as the Gerchberg-Saxton Algorithm). This theory is 

outside the scope of this article, but an excellent treatment is given in reference 4. 

3 Ankylography 

Since its first demonstration in 19995, two dimensional 

CDI has been demonstrated numerous times, both 

computationally and experimentally2,3,5,6,7,8. In 2010, Raines 

et. al. published a novel method called Ankylography, which 

generalizes CDI to three dimensions. This modality requires 

collection of large diffraction angles, so that the small angle 

approximation no longer holds, and the wave front is no 

longer planar, but spherical. In this context, the z term in the 

Fourier transform is no longer zero as in equation (1), but 

varies with the diffraction angle θ like cosθ-1. This unique 

geometry is represented in figure 21, and can be derived using 

the Born approximation9. The hemisphere is called the Ewald sphere. Two are present because of 

centrosymmetry of the K-space, which comes from the fact that a the measured object is real. 

As shown in this figure, only a 2 dimensional slice of the object’s K-space is measured. 

Ankylography uses the HIO not only to reconstruct the phases in the measured diffraction, but 

also to reconstruct phases and amplitudes in the undetermined volumes. Once these values are 

determined, full 3 dimensional scattering amplitudes of the object are revealed. The method 
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Image Source: CC Chen et. al., Three-Dimensional Imaging of a Phase Object from a 

Single Sample Orientation by Using an Optical Laser,  pre-publication 

Figure 2: The diffraction pattern 
embedded in 3 dimensional space. 
Notice that significant volumes of 
data are unknown.

 



has been demonstrated in both simulation and experiment, but the full capabilities remain 

largely unexplored. Also, the importance of various 

parameters such as oversampling degree, and the 

various techniques used to improve reconstructions can 

be quantitatively explored in more detail. 

Experimental details of Ankylography are also 

significant to the robustness of the technique. Perhaps 

the most important is the interpolation process. In real 

experiments, and even simulations, all data are discreet 

in nature. The diffraction pattern is measured using a 

finite number of pixels on a flat detector (which easily 

maps to a uniformly curved sphere by projecting onto the Ewald sphere and normalizing10). 

Similarly, the object and its K-space are represented as finite arrays inside the computer. In 

order to represent the Ewald sphere in this array, one must interpolate from the measured 

points on the detector to the nearest points in the K-space voxel array. Figure 3 shows a 

graphical representation of this detail. Note that the spacing of the points in the Cartesian grid 

relates to the oversampling degree. Many interpolation methods, including linear, bi-linear and 

spline interpolation methods prove useful in matching measured data as closely as possible 

with reconstruction data. 

Ankylography has been proposed not only as a 

method of obtaining 3 dimensional information from one 

view, but also as a way to reduce the number of projections 

required for tomography given multiple views. In this 

context, multiple Ewald spheres reside in the same K-space 

and further constrain details of the object. As Fourier 

transformations and rotations commute, the Ewald spheres 

are placed in the Fourier domain rotated at the same angle 

and along the same axis as the object. See figure 4 for an 

image of this construction. 

4 Simulations and Results 

As having a greater number of known values than unknown values imposes more 

constraints on the object, it was expected that the oversampling degree and the number of 

projections would improve reconstructions. To verify these expectations, simulation were run 

which reconstructed an object under a variety of conditions. A confocal image of a neuron was 

Figure 3: Measured points (blue) embedded in 
the Cartesian K-space (black points) 

Figure 4: Two projections from an object 
rotated 90° about an axis parallel to the 
black line. The low curvature compared 
to a full hemisphere corresponds to a 
maximum diffraction angle less than 90°. 



used as a test sample2, which consisted of a 32*32*8 voxel array. This array was embedded in a 

cubic array of a size that determined the oversampling degree. Ankylography was simulated by 

taking the Fourier transform and then eliminating information about points outside of the 

Ewald spheres. The curvature of the Ewald spheres was chosen such that the diffraction angle 

was 39 degrees. The 3 dimensional HIO was run with a rectangular support around the object. 

Note that this is an idealized case, because it ignores issues of interpolation. 

As samples are often mounted on membranes rather than suspended in free space, the 

choice of projection angles should reflect this geometry. When the beam is normal to the 

membrane, no diffracted light is blocked by the membrane or the material on which it is 

mounted. However, at 90° to this, the beam would collide with the membrane and diffracted 

light would be blocked. As the diffraction angle is 39°, the rotation angles were chosen so as to 

not block any diffracted light. In the end, angles were limited between -45° and +45°, and were 

equally spaced within this range for each run. 

Reconstructions started by choosing the best of 40 random seeds. Each seed is the 

result of 70 iterations of the 3D HIO, and the starting phase guess is recorded. The best seed 

was selected based on how well points on the spheres corresponded with points on the known 

Ewald spheres. This ‘K-space error’ is also important for measuring the quality of the final 

reconstruction. At a given iteration, it is calculated by taking the current object estimate and 

setting all points outside the support to zero. The Fourier transform of this is compared to the 

known amplitudes on the Ewald sphere3.  

Performing reconstructions with multiple parameters requires many reconstructions, 

(and 40 times as many seeds, in this case), so the number of reconstructions required quickly 

becomes unfeasible to run one-by-one. Therefore, bash script was written to automate the 

seeding process. The code first calls matlab to generate a random seed and create a Fourier 

domain array for reconstruction. It then runs a multi-threaded HIO code (which parallelizes the 

Fast Fourier transform) to reconstruct the object. After saving the error and the random seed 

and repeating many times, the code finds the best seed and carries out the reconstruction for 

additional 2000 iterations.  

Figure 5 shows a series of 225 reconstructions using a set of 25 combinations of 

parameters. Each of the 25 was run 9 times in order to verify the results and quantify the error. 

The vertical axis is the percent K-space error described above. As expected, a greater number of 
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 Special thanks to Christopher J. Tabone, who has granted permission for use of these data. 

3
 This method closely mimics a method used to quantify error in 2 dimensional CDI, in which the K-space error is 

quantified by running several iterations of the Gerchberg-Saxton algorithm. This algorithm is observed to quickly 
reduce the magnitudes outside the support. After these iterations, the known and measured Fourier transforms 
are compared. 



projections yields a lower error, and hence a better reconstruction. However, the oversampling 

ration seems to be unhelpful, if not detrimental to reconstructions. It is known that phase and 

amplitude retrieval are not possible if the oversampling ratio is too small, but it appears that 

this trend does not extrapolate to very large oversampling degrees. 

  

Figure 5: 25 combinations of oversampling degree and number of projections. They form a 5x5 grid of error values. Each 
value is determined from 9 independent, seeded reconstructions. Error bars are +/-.01 on average, based on the standard 
deviation. Oversampling ration is defined to be the number of points inside the support divided by the number of known 
points. 

A larger oversampling ratio means the voxel array is larger, so it was possible that the 

larger reconstructions had simply not converged as far as the smaller ones. However, this 

possibility was not supported by looking at the rate of change of the error at the end of the 

reconstruction. Figure 6 shows a plot of the derivative of the error as a function of the number 

of projections and the normalized oversampling ratio. There is no apparent trend in the 

convergence, which supports the statement that the oversampling ratio is not benefitting these 

reconstructions. 



 

Figure 6: Reconstructions error is still decreasing slightly, but the rate of change is not correlated with either parameter. 

 These results were repeated with a small missing center in the diffraction pattern. In figure 7, 

the same parameters were used, except that a 4° region in the zero order of the diffraction pattern was 

removed. Figure 7 shows the results of these simulations. The salient features are consistent with the 

results from figure 5 

.  

Figure 7: 225 independent reconstructions plotted in the same manner as figure 5. The only difference is the presence of a 
small missing center in the diffraction pattern. 

 



5 Conclusions 

These results are for a relatively thin sample, which was chosen because it corresponds 

to a biological sample which we have proposed to measure. The sample is a neuron mounted 

on a thin membrane, and the proposed illumination wavelength is 543nm. In multiple-

projection Ankylography, the x, y and z resolution should all be the same. Given a collection 

angle of 39°, the resolution is 
 

      
        4, which means there are .43µm per pixel. This 

means that our 32x32x8 voxel array corresponds to a neuron which is 13x13x3 µm. These 

dimensions closely match those of the proposed sample. Therefore, the simulations suggest an 

optimal configuration for the physical CDI experiment. By comparing reconstructions based on 

K-space error, real-space error and visual appearance, it was found that 4 projections (without 

a missing center) yield excellent qualitative and quantitative reconstructions. Figure 8 shows 

one such reconstruction. The R-space RMS error is less that 5%. Shown alongside is a 

corresponding reconstruction using a small missing center. The R-space RMS error is 10% in this 

case, but the reconstruction appearance is still quite good. 

 

Figure 8: A: A slice of the original sample.  
B: Reconstruction using 4 projections and a 128x128x128 K-space array  
C: the same reconstruction with a 2 degree missing center (4 degrees side to side) 

The fact that the number of projections helped the reconstructions is not surprising, as 

more data are known in the missing volumes. The question of how the oversampling degree 

affects the reconstructions was a more open question. Simulations seem to show that a higher 

oversampling degree does not benefit reconstructions after a point. However, it is known from 

experiment that oversampling ratio is critical to reconstruction quality. The simulations suggest 

that this is not due to the fact that the diffraction pattern contains more information, so an 

alternative explanation is necessary. 
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 Note that this usage of theta differs from another common usage in which 2θ is the diffraction angle.  



The following diagram may shed light on this issue. Points on the Ewald sphere do not 

exactly match up with points on the Cartesian grid. Interpolation seeks to match up pixels on 

the detector with points on the grid. What is important to notice is that even if interpolation in 

angular coordinates were perfect, there is still some error due to the fact that points on the 

Cartesian grid mostly lie slightly off the Ewald sphere. When the oversampling ratio is higher, 

this discrepancy is made smaller, as is apparent from figure 9. This may account for the 

simulated and experimental observations regarding the oversampling ratio. 

 

Figure 9: Case A uses a higher oversampling degree than B, and consequently, points on the Ewald sphere are closer to points 
on the Cartesian grid. 

6 Current and Future Directions 

These results suggest first and foremost that the interpolation problem is vital to the 

efficacy of Ankylography. Increasing the oversampling ratio is one possible solution. Another 

involves incorporating the interpolation process into the reconstruction process. One technique 

proposed by CC Chen et. al. actively searches for an extension off of the Ewald sphere onto the 

nearby Cartesian grid points. This algorithm requires operations which appear more 

computationally intensive than an FFT. However, if the oversampling ratio is less fundamentally 

significant to reconstructions than previously thought, this problem could be overcome by using 

smaller K-space arrays and instead interpolating larger distances. 

Another proposed direction is to use the shrink-wrap method. This method has been 

generalized to 3 dimensions and work is being done to determine its applicability to 

Ankylography. The method actively finds a tighter estimate of the support as the algorithm 

runs, and has been highly useful in CDI. As a tighter support correlates strongly with better 

reconstructions, it is expected that this method will improve the reconstructions. 



Simulations are currently underway which repeat figures 5 and 7 using a larger, cubic 

object. This is the first step towards a series of simulations to test how many unknown voxels 

Ankylography is fundamentally capable of reconstructing, which has been a large area of 

debate in the field. 

Overall, these simulations support Ankylography as a technique and show that it may be 

useful in many contexts. The proposed bio-imaging project using multiple projections from a 

neuron sample is important because it could potentially obtain better resolution than confocal 

microscopy, the current standard in the field. Not only is the technique only constrained by the 

diffraction limit, but it has the potential for imaging with lower light exposure, which could 

allow the extension to shorter wavelengths. In addition, it does not require fluorescent tagging, 

which is currently ubiquitous in the field. 

Though only at its inception, Ankylography already shows promise for imaging 

unexplored materials. With proper theoretical and practical development, Ankylography may 

one day generate images of biological matter with unmatched detail. The method is quite 

difficult to implement, so this possibility may only be realized with concentrated efforts to 

understand the simple cases and generalize these to more elusive objects. Even given the 

current level of demonstration, Ankylography promises to produce useful and unexplored way.
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