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Abstract

The linear and nonlinear physics of shear Alfvén waves are investigated using the 3D Braginskii fluid code
BOUT++. The code has been verified against analytical calculations for the dispersion of kinetic and inertial
Alfvén waves. Various mechanisms for forcing Alfvén waves in the code are explored, including introducing
localized current sources similar to physical antennas used in experiments. Using this foundation, the code is
used to model nonlinear interactions among shear Alfvén waves in a cylindrical magnetized plasma, such as that
found in the Large Plasma Device (LAPD) at UCLA. In the future this investigation will allow for examination
of the nonlinear interactions between shear Alfvén waves in both laboratory and space plasmas in order to
compare to predictions of MHD turbulence.

1 Introduction

The study of shear Alfvén waves has been an ongo-
ing scientific endeavor since 1942 when Hannes Alfvén
described them as a type of MHD wave [1], and
Lundquist produced them in a laboratory setting in
1949 [2]. They have long been theorized to be the
source of a number of interstellar and solar phenom-
ena such as the Earth’s aurora [8] and have only very
recently been observationally proven to be the source
of solar winds emanating from the solar corona [3].
They are also prevalent in laboratory plasmas [4] and
can provide valuable insight into containing plasmas
for fusion-related applications.

Experimentally, the nonlinear interactions of Alfvén
waves have been studied, specifically at the Large
Plasma Device (LAPD) at UCLA [5]. The results of
the Carter group’s investigation into the pseudomode
at beat frequency generated by two Alfvén waves is
the motivation for this computational study of how
Alfvén waves interact in a BOUT++ simulation. The
BOUT++ codes is a Braginskii two-fluid model [6],
and was developed by Ben Dudson of the University
of York. It is the successor to the BOUT code, which
has been used in the study of plasma instabilities for
the Large Plasma Device [7].

In this paper, a computational simulation of the linear
propagation of shear Alfvén waves with the BOUT++
code is presented, as well as a brief introduction to
the preliminary nonlinear interactions that have been
produced in these simulations. While there have been
previous computational 3-dimensioinal studies [9] into
the generation of shear Alfvén waves, this is the first

to be done with the BOUT++ code in an LAPD
plasma. In Section 2, a linear verification of the abil-
ity of BOUT++ to match an analytic dispersion re-
lation is presented. Section 3 describes how a lin-
ear forcing term, simulating an experimental antenna,
was used in the BOUT++ code to generate and drive
a continuous Alfvén wave. The resonant response of
the Alfvén wave is examined both analytically and
with the code, giving another linear verification of
the capabilities of BOUT++. Finally, an initial non-
linear simulation is examined in Section 4, building
on the foundation of linear verification models that
precede it.

The main focus of this paper is to gain an understand-
ing of the ability of BOUT++ to simulate Alfvén
Waves linearly so that there is a validated framework
to undergo studies of non-linear interactions.

2 Linear Dispersion Relation

BOUT++ is an initial value solver which is able to
solve the coupled non-linear partial differential elec-
tromagnetic and fluid differential equations that de-
scribe the dynamics of Alfvén waves in a plasma.

The first of these equations describes the continuity
of particles in a plasma:

Density Equation:

∂Ni
∂t

= ∇‖(j‖/e) (1)

Next is a parallel force equation for electrons:

Electron Parallel Momentum:
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Then there is the vorticity, or the curl of the velocity
of the fluid. This quantity can also be thought of as
the angular rate of rotation in a fluid:

Potential Vorticity

∂$

∂t
= Ni0Zie

4πV 2
A

c
∇‖j‖ (3)

Finally, there is Ampere’s Law, which is solved by
inverting the Laplacian in BOUT++:

Ampere’s Law

∇2
⊥A‖ =

−4π

c
j‖ (4)

The following two definitions are also used in
BOUT++:

Potential Vorticity Definition:

Ni0Zie∇2
⊥φ = $ (5)

Current Density:

j‖ = −eNi0V‖e (6)

Combining these linear equations using a Fourier
Transform, The following dispersion relation for
Alfvén waves is obtained:
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This analytical solution was plotted, relating the
angular frequency ω of an Alfvén wave to its wave
number k⊥ at different electron thermal speeds (Te
= 0, 10, and 100 eV) . A spatial wave structure with
specific parallel and perpendicular wavelength is ini-
tialized in the simulation and allowed to propagate.
The frequency of propagation is observed and plotted
against the perpendicular wave number in Figure 1
alongside the analytic dispersion relation.

3 Sine Forcing Term

3.1 1-D Sine forcing term

Next, instead of simply placing an Alfvén wave in
the simulation with initial conditions, a continuous

Figure 1: ω vs. k⊥ comparision of analytic calculations
(curves) (Blue - Te = 0, Green - Te = 10, and Red - Te =
100 eV) and by BOUT++ (points).

driving force is simulated by putting an antenna into
the code. The objective is to verify the BOUT++
code against analytic calculation. In order to examine
this more realistic model, assumptions are made that
there is no evolving density (∂Ni∂t ) term and that me

is zero. A sin forcing term is added onto Aj‖, and
the wave is driven off-resonance in order to prevent
exponential growth. The following normalized (from
equations 1 - 4) were solved in BOUT++:

∂Aj‖

∂t
= −µ∇‖φ+ C sin(ωt) sin(kx) (8)

∂$

∂t
= ∇‖j‖ (9)

∇2
⊥A‖ =

−βµ
2

j‖ (10)

∇2
⊥φ = $ (11)

The time derivative of equation 8 is taken, and equa-
tions 9, 10 and 11 are used along with the following
relation:

Aj‖ = −j‖ −A‖ (12)

This results in the following partial differential equa-
tion, Equation 13 :

2

βµ

∂2∇2
⊥A‖

∂t2
−
∂2A‖

∂t2
+

2

β
∇2
‖A‖ (13)

2



−ωC cos(wt) sin(kx) = 0

Equation 13 is solved by doing a Fourier Transform
in all three variables:

A‖ : A‖(x, y, t) −→ Â‖(ϕ, ξ, τ)

Using an Inverse Fourier Transform, A‖ is obtained

from Â‖:

A‖ =
ωC

2

sin(kx+ ωt) + sin(kx− ωt)(
ω2 − 2

βk
2
) (14)

Plotting this analytic solution with Python (blue) on
the same plot as the solution given by BOUT++
(green), Figure 2 is obtained:

Figure 2: Plot comparing analytic and computational results
of A‖ when a forcing sin term and a damping term are added
in. The BOUT++ results are in blue..

3.2 2-D Sine forcing term

Next, the extra term, sin(k⊥y), is added to the forc-
ing term in order to make the antenna a more re-
alistic model which creates Alfvén Waves in a 2-D
plane. A damping term is added in order to prevent
exponential growth, and this time the wave is driven
on-resonance:

∂A‖

∂t
= −µ∇‖φ+C sin(ωt) sin(kx) sin(k⊥y)+0.51νeij‖

(15)

The Non-homogeneous linear partial differential
equation, Equation 16, is determined as before in Sec-
tion 3.1:

2

βµ

∂2∇2
⊥A‖

∂t2
−
∂2A‖

∂t2
+

2

β
∇2
‖A‖ +

νei
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∂∇2
⊥A‖

∂t
(16)

−ωC cos(wt) sin(kx) sin(k⊥y) = 0

Using the same Fourier Transform Method as used in
Section 3.1, the following answer is obtained:

A‖ = −ωC
[
sin(kx) sin(k⊥y)((ϕ) cos(ωt)+( νeiβµ ωk

2
⊥)sin(ωt))

(ϕ)2+( νeiβµ ωk2⊥)
2

]
(17)

where ϕ =
2

βµ
ω2k2⊥ + ω2 − 2

β
k2 (18)

The steady state condition found in BOUT++ is plot-
ted over this analytical answer. There is good agree-
ment between the two, as seen in Figure 3.

Figure 3: plot comparing Analytic and computational results
of A‖ when a forcing sin forcing term (in both the x and y
direction) and a damping term are added in. The BOUT++
results are in blue.

Experimentally, this simulation was meant to model
driving a current pulse in the magnetic field and send-
ing Alfvén waves through the plasma. The driving
sine term was put in the equation for the Vector Po-
tential since varying this parameter most directly re-
sembled a perturbation to the magnetic field. There
is a shift in phase due to the fact that the BOUT++
simulation started at a different point, although this
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has no physical or computational bearing on the re-
sults of this study.

3.3 Resonance Frequency

Plotting an analytic spectrum of A‖ in relation to the
angular frequency, there is determined to be a value of
ω at which the Alfvén wave is driven at resonance. A
series of discrete frequencies were used as the driving
frequency for generating an Alfvén wave in BOUT++
and the resulting A‖ amplitudes were plotted in the
same figure, Figure 4.

Figure 4: Plot of Apar vs. omega, which shows a resonance
frequency, which is reached when omega satisfies the dispersion
relation, given a fixed k‖.

The BOUT++ results are again verified by analytic
calculation, and the peak amplitude for A‖ is reached
when ω is a value such that the term Equation 18 is
zero. This occurs when the ω satisfies the dispersion
relation, Equation 7, demonstrating how the natural
response of a plasma under perturbation is to generate
an Alfvén wave.

4 Non-Linear Simulation

After successfully demonstrating the capabilities of
BOUT++ to simulate a continuous driving force that
creates Alfvén waves, the next step was to simulate
the non-linear reactions that underlie Alfvénic turbu-
lence.

The aim of this simulation, modeled on the exper-
imental precedence produced by the Carter group
[5], was to generate non-driven frequencies, which
would indicate non-linear interactions and coupling
by driven waves. Following is the analytic predic-
tion and of what is expected from the simulations of

BOUT++.

At first, only one wave is theoretically driven and
when the advection term is turned on in the vorticity
equation, Equation 19 is obtained.

∂$

∂t
= VE · ∇$ (19)

This non-linear addition, along with the definition of
electron velocity (Equation 20) gives a final non-linear
differential equation with 2 fluctuating quantities, φ
and $, multiplied by each other (Equation 21)

VE · ∇$ = (
−→
B ×∇φ) · ∇$ (20)

∂$

∂t
=

(
∂φ

∂x

∂$

∂y
− ∂φ

∂y

∂$

∂x

)
(21)

Using Fourier transforms to look at the individual
wave interactions, The Equations 22 and 23 are used
to change Equation 21 into the form of Equation 24.

Fourier Transforms:

φ =
∑
k,ω

φ̃k,ωe
i(kr−ωt) (22)

$ =
∑
k′,ω′

$̃k,ωe
i(k′r−ω′t) (23)

The first term of this Fourier transformed equation
is:

iω$̃k,ω =
∑
k′,ω′

kx′(ky − ky′)φ̃k′,ω′$̃k−k′,ω−ω′ (24)

The most revealing result is an intermediate expres-
sion (Equation 25) in which there are δ-functions in-
dicating that waves can only exist when k, k′, and k′′
as well as ω ω′, and ω′′ satisfy the three-wave coupling
condition.

∑
k,k′,ω,ω′

kxkyφ̃k,ω$̃k′,ω′δ(k + k′ − k′′)δ(ω + ω′ − ω′′)

(25)

When this non-linear advection term is turned on in
BOUT++ and the same continuous driving force is
simulated as described in Section 3, a Power Spec-
trum for A‖ is obtained for different values of angular
frequency, ω, which indicates non-linear effects taking
place (Figure 5).

4



Figure 5: Non - Linear Spectrum.

When compared to the linear Power Spectrum with-
out the non-linear advection term turned on (Figure
6), there are a number of non-driving frequencies ω
produced. This indicates that BOUT++ is addition-
ally able to model non-linear wave interactions that
could potentially be compared against experimental
results.

Figure 6: Linear Spectrum.

5 Conclusion

The results of this computational study of the plasma
simulation code BOUT++ has verified that it is able
to correctly model the dispersion relation for Alfvén
waves in a plasma. Additionally it is able to simulate

launching a continuous Alfvén wave when a driving
force is added to the set of initial equations solved
by the code. Eventually, this will evolve into a more
realistic model of a physical antenna in experimental
studies of Alfvén waves. Finally, it has been deter-
mined that BOUT++ is able to simulate non-linear
effects of Alfvén waves in a plasma when the non-
linear terms of the initial equation set is turned on.
Future work revolves around this non-linear work,
specifically looking at changing the initial conditions
and parameters of these driven waves, and launching
multiple waves in order to analyze their non-linear
interactions.
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